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Tonnage information is referred to as stamping force measurement in a complete forming cy-
cle. Tonnage data contains rich information and features of stamping process failures. Due to
its nonstationary nature and lack of physical engineering models, tonnage information cannot be
effectively compressed using conventional data-compression techniques. This article presents a sta-
tistical method for “feature-preserving” data compression of tonnage information using wavelets.
The technique provides more efficient data-compression results while maintaining key information
‘and features for process monitoring and diagnosis. Detailed criteria, algorithms, and procedures
are presented. A real case study is provided to illustrate the developed concepts and algorithms.
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1. INTRODUCTION

Sheet-metal stamping is a very complex manufacturing
process. In recent years, stamping tonnage sensors have
been used widely to measure the stamping force for each
stamped part for the sake of stamping process monitoring
and fault diagnosis. This tonnage signal contains rich in-
formation and features of stamping process failures. An
example of a stamping press, tonnage sensors, and a sig-
nal is shown in Figures 1 and 2. Figure 1 shows the ton-
nage sensors and some major press components related to
press maintenance work. Figure 2 shows the total tonnage
or stamping force, which is the sum of the outputs of all
tonnage sensors mounted on the press. In Figure 2, the hor-
izontal axis is the crank angle. A complete stamping cycle
corresponds to the crank angle from 0° to 360°. Figure 2
shows only the relevant portion of a tonnage signal during
the forming stage. The forming stage here refers to the pe-
riod when the blank is pressed between the upper and the
lower dies to produce the final part. The crank angle can
be divided into several segments according to the different
forming stages of a stamping process. Based on stamping
engineering knowledge, different potential process/system
failures may occur in different forming stages. Those po-
tential failures and their corresponding segments of the ton-
nage signal in Figure 2 are listed in Table 1. More discus-
sion on the segmentation and failures will be provided in
Section 3. When different failures occur in production, the
tonnage signal changes accordingly. Thus, features can be
extracted from the tonnage signal for the purposes of pro-
cess monitoring and diagnosis. A few examples of tonnage
signatures/features and their corresponding process failures
are shown in Figure 3. In the figure, excessive snap fault,
Caused by an extreme negative force, happens only at the
- Specific forming stage when the upper die starts to rise and
Thove away from the lower die. The gib-chatter problem

shows jagged movement phenomena when the press goes
down or up with no contact between the upper and lower
dies. The problems of loose tie rods and worn bearings oc-
cur at the same stage of the press’s bottom position, but
they show different features of the peak tonnage. A flat
peak shape is the feature of a loose tie rod, and an oscil-
lation peak shape is the feature of a worn bearing. For the
purpose of process monitoring and fault diagnosis, various
tonnage signal-analysis techniques have been developed to
perform feature extraction when the fault samples are avail-
able (Koh, Shi, and Williams 1995; Koh, Shi, and Black
1996; Jin and Shi in press).

Even though the techniques for tonnage signal analy-
sis have been studied for stamping process monitoring and
fault diagnosis, the question of how to compress the ton-
nage signal efficiently, while still retaining all of its poten-
tial useful features, has not been investigated thoroughly.
This issue has become critical due to high stamping pro-
ductivity and high demands on historical data storage. As
an example, a typical progressive press can perform 200
strokes per minute. For each part, more than 1,500 data
points will be measured using one tonnage sensor with a
sampling interval of .1° of crank angle. If four sensors or
channels are used, more than 6,000 data points will be col-
lected in each stroke. In mass production, 2.88 x 10° data
points will be sampled for 30 presses in 16 hours of produc-
tion. Thus, performing data reduction for data storage is a
critical problem. Furthermore, the advancement of teleser-
vice and remote diagnosis (Lee 1995) requires in-process
measurement data transfers through the Internet. In this
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Figure 1. A Stamping Press and Tonnage Sensor Locations.

situation, development of an effective, efficient, and reli-
able data-compression technique has become an essential
research challenge in remote diagnosis and teleserving ap-
plications (Shi, Ni, and Lee 1997).

This article studies the problem of how to apply wavelet

analysis techniques in the process monitoring and diagnos- -

tic applications. More specifically, the problem is how to
conduct the data compression for the purpose of process
monitoring and diagnosis. It should be pointed out that data
compression for the purposes of process monitoring and
diagnosis is different from those data-compression meth-
ods used for a smooth estimate of the underlying function
(Coifman and Wickerhauser 1994). In those data compres-
sions, the analysis results in characterizing data as either
“signal/estimated function” or “noise” (Coifman and Yale
1992; Donoho and Johnstone 1994, 1995; Donoho, John-
stone, Kerkyacharian, and Picard 1995; Johnstone and Sil-
verman 1997); their objective is to obtain a smooth estimate
of the function from the noisy data based on the compressed
wavelet coefficients. The data compression should go be-
yond this step if it is for the purposes of process monitor-
ing and diagnosis. In monitoring and diagnosis applications,
various features are extracted from the measured signal and
used for monitoring and diagnosis purposes. Under given
diagnostic objectives, only certain features (not all signals)
are of interest to the users (Jin and Shi in press). Thus, the
irrelevant features, even those that belong to the true sig-
nals obtained by the approaches of the function estimation,
may be removed from the data during data compression to
accomplish higher data-compression efficiency. In this case,
only the relevant features should be emphasized and main-
tained after the data compression. The aforementioned con-
cept and technique are known as “feature-preserving” data
compression.

The purpose of the proposed data compression, how-
ever, is not the same as that of the feature extraction as
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published in literature (Fukunaga 1990), where the fea-
tures are extracted based on the training samples of the
known faults to achieve the maximum separability among
all trained classes. In our study, it is not necessary to know
whether the measurement signal is a fault sample at the
stage of data compression. Instead of extracting features
to represent some specific faults, our efforts are made to
maintain all potential fault features in the compressed data
by using wavelet coefficients based on engineering knowl-
edge. Thus, the remaining coefficients can be regarded as
the “whole” potential feature space for process monitor-
ing and diagnosis. This purpose is different from that of
the feature-extraction method, which focuses on the selec-
tion of a feature space to maximize the separability of the
trained samples.

“Feature-preserving” data compression for a tonnage sig-
nal is a very challenging problem due to its inherent nonsta-
tionary nature (Fig. 2). Various features of potential process
failures are embedded in the signal, as shown in Figure 3.
To perform the tonnage signal analysis, these critical fea-
tures should be maintained after data compression. Exam-
ples of these features are shown in Figure 2 and include the
following:

1. Transient jump edges, which correspond to the process
transient time at the different working stages

2. Curvatures of low-frequency components, which indi-
cate the change rate of the tonnage force

3. Peak tonnage, which shows the maximum force when
the slide touches the bottom die position

4. Oscillation components, which represent the dynamic
performance of a stamping process

Obviously, the data-compression methods that use a para-
metric model cannot be implemented in tonnage signal anal-
ysis due to the complexity and lack of appropriate physical
models to describe the stamping process. When a nonpara-
metric approach is considered for tonnage signal data com-
pression, the wavelet analysis technique is superior due to
its natural local properties in both time and frequency do-
mains. Those favorable characteristics can be summarized
as follows:
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Figure 2. An Example of Tonnage Signals in a Forming Process.
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Table 1. Tonnage Signal Segmentation and Fault Features

Resolution
of interest
Segment S, Crank angle (data range) Process failures Fault signal features Jr(s=3) Pr %
5y slide going down 118.12°-141.88° [1, 198] Gib chatter due to the Dominant characteristic frequency J = 5,6 5
excessive clearance component
S,: blank holding & 142.00°-162.52° [199, 370] Excessive dynamic 1. Transient rising edge dependent J = 3,4,5,6,7 10
draw-bid forming interaction between the on the shut height and
press and the nitrogen material thickness
cushion system 2. Dominant frequency components
dependent on the process
dynamic characteristics
3. The mean of the signal segment
dependent on the nitrogen
cushion pressure
S5: part drawing 162.64°-176.32° [371, 485] Large variation of the blank  Signal slope and curvature J=23,456 5
material
S,: slide close to the 176.44°-182.32° {486, 535] Loose tie rod, worn bearing, Profile shape and peak value J=23456 2
press bottom ) shut height change, die
worn out
Ss: slide leaving away  182.44°-188.32° [536, 585] Larger variation of the blank Signal slope and curvature J=23,4,5 5
from the lower die material (spring back)
Sg: slide only contacting 188.44°-213.52° [586, 795] Change of the nitrogen The mean of the signal segment J = 3, 4 5
with the lower binder cushion pressure dependent on the nitrogen
cushion pressure
S;: slide leaving away  213.64°-221.92° [796, 865] Die bounce generated at the 1. The transient dropping edge J =3,4,5,6,7 10
from the lower binder time of nitrogen cushion sensitive to the shut height and
released material thickness
2. The area of the excessive snap
of the negative force sensitive to
the die bounce
Sa: slide continuously ~ 222.04°~241.00° [866, 1024] Gib chatter Dominant characteristic frequency J = 5, 6, 5

going up

component

1. The orthogonality of wavelets ensures the data-
compression capability by expressing a function with a few
coefficients and shrinks noises by thresholding wavelet co-
cfficients. ‘

2. The compactness of wavelets in the time domain en-
sures the detection of the transient jump edges.

3. The multiresolution analysis capability of wavelets de-
composes a signal into different resolution levels, which can
efficiently filter out the irrelevant signal from the relevant
frequency bands.

Data compression using wavelets, called “data shrink-
age,” has been well developed since the significant achieve-
ments in denoising applications by Donoho and Johnstone
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Figure 3. Examples of Fault Tonnage Signals.

(1994). A thresholding strategy was proposed for the data
compression by setting an appropriate threshold of wavelet
coefficients to filter out noises, thus reducing the number
of nonzero data points in a signal. Much research has been
done to determine an appropriate threshold. Donoho and
Johnstone (1994) and Donoho et al. (1995) proposed a uni-
versal threshold that is incorporated into their VisuShrink
procedure to get a smooth estimate of the underlying func-
tion of the signal. To estimate an unknown smoothness
function, an adaptive threshold chooser, called SureShrink,
was proposed later by Donoho and Johnstone (1995), based
on Stein’s unbiased risk estimation. The SureShrink chooser
specifies a threshold value for each resolution level in a
wavelet transform. These thresholds treat only signals with
white noise. Further research has been done in dealing with
correlated noise (Johnstone and Silverman 1997). Recently,
many other thresholding rules have also been developed
with different objectives, such as prediction error, false dis-
covery rate, and the Bayesian perspective. To minimize pre-
diction error, the cross-validation thresholding method was
proposed and studied by Nason (1995, 1996) and Weyrich
and Warhola (1995). The multiple-hypothesis testing proce-
dure has been proposed to obtain an adaptive thresholding
of wavelet coefficients under a satisfying false discovery
rate (Benjamini and Hochberg 1995; Abramovich and Ben-
jamini 1995, 1996). In terms of minimizing the predefined
loss function, a point estimate of the wavelet coefficients
can be obtained by using the Bayesian approach. It can
be used to develop a statistical model for wavelet coef-
ficients without assuming that the wavelet coefficients of
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an unknown signal are independent (Vannucci and Corradi
1997).

Even though much research has been done in data com-
pression for image and audio signals, little research has
been done in applying wavelets to data compression for
process monitoring and diagnostic applications. In this ar-
ticle, the concept of feature-preserving data compression
is developed for stamping process monitoring and diagnos-
tic applications. As shown in Figure 4, instead of stopping
at the denoising step, data are further compressed based
on the frequency band of interest and the satisfactory ap-
proximation accuracy. Thus, the feature-preserving concept
contains two essential aspects: (1) The signal features re-
lated to the purposes of process monitoring and diagnosis
should be maintained—that is, feature preserving after data
compression—and (2) other signal information beyond the
interests of potential usage of signals should be removed to
accomplish higher data-compression efficiency. In this ar-
ticle, tonnage signal data compression is studied to show
the concept, general methodology, and results of feature-
preserving data compression.

The article is organized as follows: After the introduc-
tion, a detailed study of feature-preserving criteria is pro-
posed in Section 2. Those criteria are developed by combin-
ing the engineering knowledge of stamping processes and
wavelet multiresolution analysis. Two indicators regarding
the relevant resolution region and approximation accuracy
are defined. Section 3 proposes a general data-compression
procedure for stamping tonnage signals. A new segmental
thresholding strategy is presented to satisfy the proposed
feature-preserving criteria at each segment. A real exam-
ple, based on the material thickness change, illustrates the
feature-preserving data compression procedures and results.
Finally, the impact of the data compression on the perfor-
mance of monitoring and diagnosis is also investigated.

2. FEATURE-PRESERVING DATA COMPRESSION

2.1 Wavelet Basis and Notations
A few notations about wavelets used in this article are

Sampling Noisy Data

v

Step 1: Denoising

meemmmme————— * ............ -

Step 2: Filter the Signal Beyond
the Frequency Band of Interest

;

Data Compression Based
on Feature-Preserving

Step 3: Approximate the Signal
Under the Satisfactory Accuracy

Compressed Data

Figure 4. Analysis Procedures of Feature-Preserving Data Compres-
sion.
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briefly introduced here. If f(z) € L?(R), then f(z) can be
expressed as (Daubechies 1992)

@)= catalz)+ > diptirlz), (1)

kezZ j=s,keZ

where functions ¢(z) and y(z) are the two basic func-
tions, known as a scaling function and a mother wavelet.
The coefficient ¢, quantifies the basis function ¢, (z). The
d;x quantifies the basis function ;. (z). The basis function
¥k () has its center frequency at 27w, where w, is the cen-
ter frequency of the mother wavelet 1 (z) (Cohen 1992).
When a discrete wavelet transform W is used for a
dataset Y (y1,...,yn; N = 2"), it can be expressed by

C=WY, 2)

where W is the wavelet transform matrix (Mallat 1989) and
C is the wavelet coefficient. If W is an orthogonal wavelet,
the original data Y can be recovered by the inverse discrete
wavelet transform (without considering the boundary filter
effect) as

Y =wTC. 3)

2.2 Data Decomposition

To realize feature-preserving data compression, a three-
layer data-decomposition structure is proposed, as shown
in Figure 5. At Layer 1, the original sampling data Y is
decomposed into two portions, the signal F and the noise
Z, which is the same #s the data compression used for
the smooth estimate of the underlying function approach
(Donoho 1995). At Layers 2 and 3, based on process-
engineering knowledge, the signal portion is further de-
composed according to the relevant frequency band of a
signal and a satisfactory accuracy requirement. These two
layers of data decomposition form an important data struc-
ture for the following feature-preserving data compression.
The detailed discussion of the data decomposition is given
as follows:

At Layer 1, the original sampling data Y can be expressed
by

Y=F+7Z, 4)

where F is a signal vector of samples f(¢,),i =1,...,N
with N = 2™, Z is a noise vector drawn from a white-noise
process z;,% = 1,..., N, with z ~ iid N(0, 02).

At Layer 2, the signal frequency band of interest can be
predetermined using process-engineering knowledge. The
signal beyond the frequency band of interest should not be
kept in the final compressed signal. In terms of the signal-
frequency band of interest, the total signal F can be decom- -
posed into two components:

F=F! 4+ F°, . &)

where F! is the signal within the frequency/resolution
band of interest and F© is the signal out of the fre-
quency/resolution band of interest. All frequency bands of
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Sampling Noisy Data
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Figure 5. Data Decomposition for Feature-Preserving Data Compression.

interest form an interested frequency set, denoted as J. So,
for any j € J, the decomposed signal with the frequency
27w, or resolution 2~7 is within our interest.

At Layer 3, considering a satisfactory approximation ac-
curacy, the signal F/ can be further expressed as

F/ =F4 +E, (6)

where F4 is the final compressed/approximated signal vec-
tor and E is the approximation error vector.

An index, P, is used to describe the satisfactory accuracy
requirement, which is defined as .

I -FAREJR
P="FpE =P

x 100%, N

where |-|2 = 3°,[::]%. The approximation error is relative
to the signal F¥ within the interested frequency set J.

2.3 Threshold Selection for Data Compression

To accomplish those three steps of the data compression
shown in Figure 5, three different thresholds need to be
selected.

2.3.1 Threshold Selection for Denoising. Following the
general procedures of data compression, the first step is to
conduct the discrete wavelet transform of noisy data:

WY = WF + WZ. (8)

The corresponding wavelet coefficients can be denoted by
)

where W is a discrete wavelet transform, and C, CF, and
C? are the wavelet coefficients respective to the original
noisy signal Y, the signal F, and the noise Z.

The second step is thresholding of wavelet coefficients.
The threshold can be determined by using general denoising
shrinkage methods. Because a white noise is being consid-
ered here, a universal threshold is used (Donoho and John-
stone 1994) as

C=CF 4+ (C?,

(10

ped =§dy/2log N,

where AZ is the threshold used for shrinking the noise co-
efficient CZ and & is an estimate of the noise level, which
is determined by a scaled median absolute deviation of the
empirical wavelet coefficients.

The shrinkage of wavelet coefficients is based on a hard
thresholding rule, which is defined by

Tzz{

where T is a hard thresholding rule for filtering out the
noise Z based on the absolute value of the wavelet coef-
ficient c;x. If the smoothness of the estimated function is
a critical concern in the application, some other threshold-
ing methods, such as soft thresholding (Donoho 1995), gar-
rot thresholding (Breiman 1995; Gao 1997), and Sureshrink
(Donoho and Johnstone 1995) can be used. _

2.3.2 Threshold Selection in the Frequency Domain.
The objective of conducting data thresholding in the fre-
quency domain is to eliminate all irrelevant frequency bands
in the signal that are not related to the process faults. Based
on the multiresolution analysis of the wavelets (Chui 1992),
the signal F in Equation (5) can be rewritten as a wavelet
decomposition form:

PV WS+ W,
jeJ igJ

Cjk, if chkl > Az

; 11
0, if chkl < /\Z ( )

(12) -

where V¥ corresponds to the approximation of the signal
F at the relevant coarsest level s; that is,

vi= Y

ke[0,25 -1}

(13)

cfk‘pska
and Wf is the decomposition of the signal F at the single

level j7; that is,
F _
wi= >

k€[0,25 1)

cfi¥ik- (14)

Because FO = ¥ gl W/ is related to the signal beyond
the relevant frequency band, the corresponding wavelet co-
efficients cf; (7 ¢ J) should be set to 0. This thresholding
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rule is expressed as

TO _ Cik,
0,

where T is the thresholding rule used for the shrinkage of
the signal FO.

2.3.3 Threshold Selection in the Time Domain. The ob-
jective of conducting data thresholding in the time domain
is to achieve a high data-compression rate with feature pre-
serving by ensuring satisfactory approximation accuracy.
Based on Equation (12), after filtering out the signal FO,
the signal F! can be expressed as

ifjed

ifigd’ (13)

Fl=vi+> Wl (16)
jeJ
Based on Equation (6), it can be obtained:
WF! = WF4 + WE. (17

These corresponding wavelet coefficients can be denoted by
c'=c4+C"P (18)

Considering a satisfactory approximation accuracy limit,
P, for data compression of a signal, the shrinkage of the
wavelet coefficients C (c],, 7 € J) can be further accom-
plished by using a hard thresholding rule T similar to
Equation (11) with the threshold X\¥ as follows:

p.lCH|? 1/2
AE = sup {/\ < [—l—ll—c——‘l—] (19)
and
TE _ Cik; if |Cjk| > \E 20)
Tl o0, iffckl <AE

where n, is the number of coefficients that are set to 0 by
the threshold ) in this step. It excludes the initial number
of zero coefficients due to the previous shrinkage of Z and
FO. It can be proven that a satisfactory approximation ac-
curacy limit P can be achieved by using a threshold defined
in Equation (19). A short derivation is provided in the Ap-
pendix.

Based on Equations (19) and (20), the iterative calculation
steps for AP are as follows:

1. Sort all coefficients C in absolute value from the
largest to the smallest.

2. Set n, = 1 and let A be equal to the last nonzero
coefficient.

3. Verify if Equation (21) is satisfied:

\< [P- HCIIP]W_

Nz

(21)

4. If Equation (21) is satisfied in Step 3, set the last
nonzero coefficient equal to 0 and go to Step 5; otherwise,
stop the iteration and use the A at the last iteration as AE

5. Increase n, by 1, and let AF be equal to the next
nonzero coefficient; then go to Step 3.
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Remark. The preceding iterative analysis procedure is
similar to that of Ogden and Parzen (1996) in principle—
that is, inclusion/exclusion of coefficients until a criterion is
satisfied. There are, however, some differences in the thresh-
olding criterion. The method of Ogden and Parzen (1996)
uses a hypothesis test criterion. The level of likelihood ra-
tio test is selected to ensure the smoothness of the estimate
or the smoothness of the reconstruction of the underlying
function or curve. In this article, the objective of data com-
pression is to maintain all signal profile features for future
process monitoring and fault diagnosis. Thus, a satisfactory
approximation accuracy limit is defined as the criterion in
the data compression.

3. DATA COMPRESSION FOR STAMPING
' TONNAGE SIGNALS

3.1 Tonnage-Signal Segmentation

3.1.1 The Concept of Segmentation. The concept of seg-
mentation is used in this study. The word “blocking” (or
“segmentation”) has been used in image-analysis research.
In the literature, there are two types of “blocks” used in im-
age signal processing. The first type defines a block based
on the texture of an image (Froment and Mallat 1992). In
this method, the total energy of the wavelet coefficients in
the block is compared with a predetermined threshold. The
threshold is determined based on the criteria of texture dis-
tortion and human visual sensitivity. The second type of
block is used in motion compensation (Rao and Bopar-
dikar 1998). In this méthod, the motion compensation is
performed on a block-by-block basis by dividing the im-
ages into blocks of equal size or segmenting based on cri-
teria (Calzone, Chuang, and Divakaran 1997).

In this article, a different segmentation strategy is pro-
posed for stamping process monitoring and diagnosis. In
this segmentation strategy, the number of segments and
the boundary partition of each segment are determined by
stamping-engineering knowledge. The purpose of the seg-
mentation is to partition the data into various segments
so that each segment corresponds to fewer process faults.
Based on the segmentation results, segmental thresholds are
defined to achieve the feature-preserving objective—that is,
to maintain all potential features for process monitoring and
diagnosis. Detailed discussion is presented in the following
subsections.

3.1.2 Segmentation of Tonnage Signals. The developed
feature-preserving data-compression technique is used in
tonnage signal study. As shown in Figure 2, the curvature
changes of a tonnage signal are closely related to differ-
ent working stages of a stamping process, which is usually
referenced by a crank angle. To simplify the expression
for the later wavelet analysis, however, the crank angle in-
dices of a tonnage signal are now changed into sampling
points. Generally, a crank-angle trigger is used in a data-
acquisition system. The real crank angle can be easily re-
covered through the transformation of 8y + i*Af, where 6
is the starting trigger position of the crank angle, i is the
sampling point index, and A8 is the sampling interval.
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Because most process faults are associated with only
some specific working stages, the partition of a tonnage sig-
nal into nearly disjointed segments can explicitly simplify
the fault diagnostic problems (Koh et al. 1996). The bound-
aries of the partition are determined by the engineering
knowledge of a stamping process, which defines the inter-
actions between the press, the die, and the material (blank).
In general, a total tonnage can be divided into eight seg-
ments as shown in Figure 6. The boundary of each segment
corresponds to the change in a forming cycle. A complete
stamping cycle can be described as follows: (1) The upper
die (i.e., the outer binder and the inner punch) goes down
from the top position until it touches the blank at data index
198. (2) The outer binder interacts with the lower die and
generates binding force from index 199 to 370. (3) Then,
the inner punch touches the blank and starts deep-drawing
at index 371. (4) The deep draw continues, and the inner
punch reaches the peak tonnage zone from index 486 to
535. (5) After that, the inner punch departs from the lower
die and finally separates with the lower die at index 585. (6)
After index 586, only the outer binder is in contact with the
lower die. (7) The outer binder goes up at index 796, and the
die cushion bounces back at the same time. The cushion’s
effects will disappear after index 865. And finally, (8) the
upper die goes up to the initial position. The preceding eight
steps correspond to a cycle of stamping one part. Each step
corresponds to one segment in the tonnage-signal segmen-
tation. Thus, the boundary and the size of each segment are
determined purely by stamping-process knowledge. Mean-
while, the potential faults occurrirfg in each segment can
also be analyzed based on engineering knowledge because
only certain components of the press, die, and blank inter-
act in each segment. As an example, the gib-chatter fault
in a press may occur only when the upper die goes down
or up—that is, in segment S; or Ss. Similarly, a loose tie
rod may be observed only when the maximum tonnage is
required in the peak value—that is, segment S;. Based on
this knowledge, the potential faults for each segment can
be defined.

Table 1 provides the summary of the process working
stage, the potential faults, and their associated fault fea-
tures at each segment S, (r = 1,...,8). In the table,
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Figure 6. Segmentation of a Tonnage Signal.
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B = 118°,i = 1,...,N,N = 2" = 1,024,n = 10, and
A8 = .12°. Due to the variability of the working stages, the
frequency/resolution bands of interest and the satisfactory
approximation accuracy P need to be defined individually
at each segment and are denoted as J, and P, respectively.
The modified definition of P, is given in Section 3.3, and
the values of P, and J, are given in Table 1. In general, P,
is specified based on the magnitude range of each potential
fault and the process noise variance in each segment, and
J, is specified based on the specific frequency ranges when
potential faults occur in the segment. In practice, the fre-
quency ranges corresponding to specific component failures
are available from engineering design or can be analyzed
for a given stamping system (ABC 1996).

3.2 Wavelet Decomposition of Tonnage Signals

Based on the characteristics of tonnage signals, Dau-
bechies wavelet DB3 is selected as the basis of the wavelet
transform. The selection of DB3 in the analysis is based on
the following two major considerations.

The first consideration is that energy loss has been used
as one of the criteria in the thresholding, as defined in Equa-
tion (7). In the stamping signal, the integral of the tonnage-
signal square is considered to be the forming energy. Thus,
a relationship between the tonnage signal and wavelet coef-
ficients should be developed. According to Parseval’s theo-
rem, the norm of the wavelet coefficients is the same as the
norm of the function being spanned (Burrus, Gopinath, and
Guo 1998). Thus, the energy loss due to the shrinkage of the
wavelet coefficients is described by the sum of squares of
shrinkage wavelet coefficients. Based on this, the threshold
can be simply determined easily using a given satisfactory
accuracy requirement as defined in Equation (19). As a re-
sult, the major reason to choose the Daubechies orthogonal
wavelet is because Parseval’s theorem holds whereas for
biorthogonal wavelets, it does not (Burrus et al. 1998).

The second consideration is the smoothness or the num-
ber of vanishing moments required in the stamping sig-
nal. For Daubechies wavelets DBp with the support length
2p — 1, the number of vanishing moments of 1 equals p,
and the regularity increases with p (Misiti, Misiti, Oppen-
heim, and Poggi 1996). In our application, the changes of
stamping tonnage signals due to process faults are reflected
mostly on the waveform profile change, which can be seen
from examples such as loose tie rod and excessive snap
shown in Figure 3, and material thickness change shown in
Figure 8, Subsection 3.4.1. In general, those waveform pro-
file changes can be described by a second-order polynomial
approximation, which supports the selection of DB3 in our
application.

Using DB3, Figure 7 shows the wavelet decomposition
results at each level, where the approximation signals V; (5
is the decomposed level, j = 3,4,...,9,5 = 3) are shown
on the left panels and the related decomposed detail signal
W is shown on the right panels. Based on the muitireso-
Iution analysis (Chui 1992), it can be seen that

Viti=V;+W; (22)
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and calculation of these wavelet coefficients is related to multi-
ple segment data.

YoV ! W 23) Nonoverlap coefficients are coefficients corresponding to
=Vt Z ks wavelets that are included within one segment. The calcu-
k=j

lation of these wavelet coefficients is related only to one
segment’s data.

3.3.1 Identifying Wavelet Coefficients at Each Segment.
Because the wavelet transform is conducted for the total
tonnage signal with all segments, this subsection discusses
how to identify the wavelet coefficients for thresholding ina
given segment. Those wavelet coefficients include nonover-
lap coefficients but may, or may not, include overlap coef-
ficients. Consequently, in terms of whether to include the
overlap coefficients in a given segment, two definitions are
given as follows:

where j =s,...,n—1 (s =3,n=10).

3.3 Segmental Thresholding

In different signal segments S, (r = 1,...,8), there are
different relevant frequency sets J.. and satisfactory accu-
racy requirements P, as shown in Table 1. Thus, the seg-
mental thresholds need to be used at each segment for data
compression in Layers 2 and 3, as shown in Figure 5. For
this purpose, the threshold selection discussed in Section
2.3 must be modified. Before the detailed discussion of the

modified thresholding procedures, two important terms will 1. Type 1 coefficients: In a given data segment, Type 1
be introduced, “overlap coefficients” and “nonoverlap coef- coefficients include only the nonoverlap coefficients.
ficients.” 2. Type 2 coefficients: In a given data segment, Type 2

Overlap coefficients are coefficients corresponding to  coefficients include both the nonoverlap coefficients and the
wavelets that overlap the boundary between segments. The overlap coefficients.

Tonnage (ton) Tonnage (ton)

500 v . . . 100
0 ‘_F//_J——\__\‘_‘_‘-‘-\— \/3 0 \_/\/\/\y—\/\/\,—/\/\/\ W3
-500 . . N . -100 : . . .
500 r - r . . 100 . y . . .
0 N_/'J/_\H\— V4 0 WW W4
-500 . - . : -100 : . . .
500 . . . y r 100 . r . . .
0 N—/_,_//\_,,\A_ Vs 0 "‘V‘/\M“'\}\{\“"\/\’\M" W
-500 . ; . ; . -100 : . . .
500 . . . . r 50 r v x v T
0 M A\’ 0 ’_AWM Wy
-500 . . — -50 s s : .
500 ' . . r . 50 . . r . r
0 M Vv, 0 M‘,‘. A{HMM W,
-500 L A s -50 N
500 . r r r r 20 v v v
0 M Vs 0 4 WB
-500 s i 1 L -20 2 2 . 1
500 T T T T T 10 r T T T .
[y] M Vg 0 Wg
-500 L L . 1 -10 L s L L
200 400 600 800 1000 200 400 600 800 1000
Data Index Data Index

Figure 7. Wavelet Decomposition of a Tonnage Signal.
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Based on the preceding definitions, these two types of
oefficients can be selected from all wavelet coefficients
sing the following algorithms:

Type 1 coefficients selection. For a given data segment
i with data points v;(i € [ar, b)), ar and b, are the start-
ag data index and the ending data index of this segment.
‘he starting wavelet coefficient index ca?~! and the end-
ng wavelet coefficient index cb?~! at the decomposed level
—1 of segment S,. can be obtained by using the respective
ndices at level j:

if ¢b) —m >cal then

; . 741
cal™! = int (car + ) and

2
bl = int(dﬂz_m);

otherwise cal ™! = cbi™! = 0.

(24)

(25)

\t the finest level—that is, j = n = 10 for N = 1,024
ampling data—ca” and cb} are equal to the starting data
ndex a, and the ending data index b, of segment S,. For
daubechies wavelets DBp, the support length of ¢ is m =
o — 1 (Misiti et al. 1996).

Proof. The wavelet coefficients at level j — 1,C(;_1)x
k = 1,...,N;_1; N;_; is the number of wavelet coeffi-
ients at level j — 1) are obtained through the highpass filter
Strang and Nguyen 1996) on the coefficients Cj at level
. The decimation principle is that only half of the high-
vass filter outputs corresponding to the odd index at level
i are kept to form coefficients at level 7 — 1. Based on this
rinciple, the number of wavelet coefficients at level j — 1

N;_1) can be obtained as
N;—m— 1)
- +m.

N;_1 = int ( 1 5 (26)
dere j = 1,...,n (n = 10), and N,, equals the length of
he original data series (N, = N = 1,024).

The starting coefficient index ca?~! of Type 1 contribu-
ion coefficients at level j — 1 in segment S, can be de-
ermined by the starting coefficient index cal at level j.
f cal is an odd index, the highpass filter output at this
»dd index is kept according to the preceding decimation
rinciple. Because only half outputs at the odd indices are
cept, the starting index cai~?! at level j — 1 is ca? ™! = (ca?
+1)/2; otherwise, if the starting coefficient index ca? is an
sven index, the highpass filter output at this even index is
gnored. The actual starting index at level j —1 is shifted to
he next point; thus, cal=! = cal/2 + 1. In both cases, one

128
; . I+1
ca?”! = int (ca,2+ ) ;

vhere the int operation obtains the nearest integer and
nt(.5) = 1.

For the ending coefficient index at segment S, because
Type 1 contribution coefficients do not include overlap co-

(27)
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efficients, the actual ending index cb? should be shifted back
m points at level j. Otherwise, the ending index will con-
tribute to the excessive region beyond cb?. Similar to the
preceding discussion on the starting coefficient index, the
ending coefficient index can be obtained as follows based
on the decimation principle:

ch~! = int (cbl;m)

If cbl — m < ca?, it means that the ending index is located
before the starting index, and thus no relevant Type 1 con-
tribution coefficient is included; that is, cal™! = chl=1 = 0.

(28)

Remark. Type 1 coefficients are used in the segmental
thresholding of coefficients C’ under the satisfactory accu-
racy limit P, at segment S,. The approximation error E,,
which is defined at segment S,., is caused by shrinkage of
the nonoverlap coefficients in only one segment. As a re-
sult, it guarantees the satisfactory approximation accuracy
that will be defined in Equation (31).

Type 2 coefficients selection. For a given data segment
S, including data points y;(i € [ar,br]),a- and b, are the
starting data index and the ending data index of this seg-
ment. The starting wavelet coefficient index ca?~' and end-
ing wavelet coefficient index cb/~! at level j — 1 can be
obtained by using the respective indices at level j,

cal™' = int (%:2ﬂi—1~> if cal-m>1
=1 if cal-m<1 (29)
and
chi™t = int(igé) if cbl+m<N;+1
= Nj_; if cbl+m>N;+1 (30)

Because Type 2 contribution coefficients may overlap more
than one signal segment, the actual starting index must be
shifted back m points at level j unless it reaches the first
point. Therefore, similar to the discussion on the starting
index of Type 1 contribution cocfficients, Equation (29)
holds. For the ending coefficient index of Type 2 contri-
bution coefficients, there is no need to shift back m points
at level 7. The ending index cbi~! is simply equal to half
of cb? unless cbl + m is beyond the ending point N;. In
that case, N;_; is used as the ending index instead, as in
Equation (30).

Remark. Type 2 coefficients in the segmental threshold-
ing are used to filter out signals beyond the relevant fre-
quency set J, at segment S,. Because the overlap coeffi-
cients are also involved, they are thresholded here to achieve
more efficient data compression. Because the overlap coef-
ficients are compressed based on different thresholds at dif-
ferent segments, however, a conservative coordination be-
tween the segmental thresholding is required to ensure the
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feature-preserving requirement. It is suggested that the co-
efficients can be set to 0 if and only if they have been set
to 0 in all segments. The detailed thresholding procedures
will be provided in the next subsection.

3.3.2 Coordinate the Segmental Thresholds in the Fre-
quency Domain. As mentioned previously, there are several
threshold rules applied on the overlap coefficients, which
can lead to different thresholding results. Thus, coordina-
tion is required for these overlap coefficients. The basic idea
in the coordination is to keep as few coefficients as possible
under the constraint of feature preserving. In other words,
a coefficient cannot be set to O at this stage unless it is set
to 0 in all segments. The detailed procedures include the
following:

1. For segment S, (r = 1,...,8), determine the coeffi-
cient indices of Type 2 contribution coefficients.

2. For each coefficient of CF, identify whether it be-
longs to the preceding set of selected coefficients. If not,
set it to O; otherwise, further check to see whether it is
within the relevant frequency band J,. If so, keep it un-
changed; if not, set it to 0. As a result, when Step 2 is fin-
ished, a new compressed coefficient vector C,. is obtained
for each segment S,. The dimension of C, is equal to that
of CF. ‘

3. The final coefficient vector C! is obtained by a conser-
vative coordination between the coefficients C,. at each seg-
ment, using cf, = cf, when Yor_1 Cr(k) # 0. Here, ¢l &,
and c,(;) are coefficient elements in vectors C!,CF, and
C., respectively.

3.3.3 Coordinate the Segmental Thresholds in the Time
Domain. Because the satisfactory accuracy limit P. has to
be associated with each segment S, (r = 1,...,8), the defi-
nition of segment P of Equation (7) is modified as follows:

_ IE-F2y

P= e 100

(31

where r is the segmentation index. Based on this defini-
tion, the threshold AZ of Equation (19) is also modified as

follows:
. Iy271/2

Ny

where each parameter is limited to segment S, instead of
the whole data range. The detailed iteration steps are simi-
lar to the steps given in Section 2.3.3. The only difference
is that the data are separately processed for each segment
rather than for the whole data range at one time.

3.4 An Example of Stamping Tonnage-Signal
Compression

3.4.1 Feature-Preserving Data-Compression Results.
As shown in Figure 8, two sets of tonnage signals with
different material thickness are used to validate the feature-
preserving criteria in the data compression of tonnage sig-
nals. The solid curve represents the tonnage signal using
the blank with 10% greater than the normal thickness,
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Figure 8. Tonnage Signals With Different Material Thickness (1,024

Data Points).

and the dashed curve is related to the thinner blank with
10% less than the normal thickness. The curvature dif-
ference of these two tonnage signals is clearly shown in
Segment 3.

As the first step (the first layer shown in Fig. 5), the de-
noising threshold of wavelet coefficients is used. The data-
compression results are shown in Figure 9. It can be seen
that the number of nonzero wavelet coefficients is reduced
from the original 1,024 data points to 621/640 respective
to the thicker/thinner material thickness. In this step, some
irrelevant signals with the higher resolutions beyond our
relevant frequency band are still kept in the compressed
signals. To achieve more efficient data compression, these
data are further compressed by using the proposed seg-
mental thresholding strategy. After removing irrelevant fre-
quency signals (the second layer in Fig. 5), the remaining
nonzero coefficients are dramatically reduced from 621/640
to 82/95, corresponding to the thicker/thinner material
thickness. Further data compression is conducted under the

Tonnage (ton)
400 T

350
300

250

1000

¢ 200 400 600 800
Data Index

Figure 9. Denoised Tonnage Signals (the number of nonzero wavelet
coefficients of signal 1 is 621, the number of nonzero wavelet coefficients
of signal 2 is 640).
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Figure 10. Compressed Tonnage Signals Using the Feature-
Preserving Approach (the number of nonzero wavelet coefficients of
signal 1 is 66; the number of nonzero wavelet coefficients of signal 2
is 73).

satisfactory accuracy index (the third layer in Fig. 5). As a
result, the nonzero coefficients are reduced to 66/73. The
final compressed results are shown in Figure 10. From this
figure, it can be seen that the irrelevant signals are ef-
ficiently removed while the fault features are kept very
well. This case study indicates that data compression us-
ing feature-preserving criteria is much more efficient than
conventional data compression. About 92% data reduc-
tion has been accomplished using ‘the presented method,
as compared to 38% data reduction using denoising data
compression.

The effectiveness of the developed feature-preserving
data compression can be further demonstrated with the
fault-detection power in process monitoring and fault di-
agnosis. Some discussion on this topic is presented in the
next subsection.

3.4.2 Assessment of Fault-Detection Performance.
Feature-preserving data compression may have an impact
on the performance of process fault detection. As an ex-
ample, the material-thickness change is reflected by a mean
shift of the wavelet coefficient c3(6,25) at the decomposi-
tion level 6 (a nonoverlap coefficient in segment Sj; i.e.,
r = 3,j = 6,k = 25). Because the detection power is asso-
ciated with a specific detection algorithm, an X-bar chart
is used to monitor the mean shift of the coefficient €3(6,25)
in the article.

It is assumed that a mean shift y; is generated due to the
material thickness change. The detection power D respec-
tive to this mean shift can be calculated by (Montgomery
1996)

D=1-9(L-Kym)+&-L-Kyag), (33)
where ®(z) is the cumulative probability function of a stan-
dard normal distribution. L is associated with the control
limits under a given Type I error o, ng is the sample size of
the detected subgroup, and K represents the mean shift z,
relative to the process standard deviation ¢ (K = p, /o).
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After data compression, some coefficients will be set to
0 if their absolute values of the monitored coefficients are
less than the threshold A. If each wavelet coefficient before
data compression follows a distribution with the probability
density function g(z), after data compression, the estimate
of mean value can be obtained by

p1+ Ap

A A oS
:/_ clzg(at:)da:Jr/_/\ac-O-'d:1:+/A zg(z)dz, (34)

o

where p is the original mean shift before data compression,
Ay is the additional mean shift due to the data compression,
A is the threshold, and here A\ = /\3’,’3 . The magnitude of Ap
will affect the power of the process change detection. From
Equation (34), Ay can be calculated by

A
Ap= —/ zg(z) dz. (35)
Y

If assuming that g(z) is for a normal distribution, Ay can
be obtained by solving Equation (35):

g (e-('\—#1)2/202 _ e"()\+#1)2/202]

o (152)-o(252)]. o

V2
Similar to the definition of K, a relative mean shift can be
defined as AK = Ap/o; that is,

Ap =

AK = [e=-m/20% e Oy /27|

Vor
-K- [@(’ky’“)—@(#)}. 37)

The effect of AK on the detection power can be analyzed
by differentiating Equation (33):

AD = /no(9(L — K/no) — 9(—L — K+/mo)) - AK.  (38)
Equations (37) and (38) provide a quantitative relationship
between the threshold value and the detection power loss
due to the data compression. Thus, if threshold A is selected
in the data compression, the process detection power will be
reduced from its original D (in the absence of data compres-
sion) to D+ AD (AD < 0) (with data compression). In our
example, L = 3 and ng = 5 are used. The detection power
of the mean shift due to the material thickness change as
shown in Figure 8 is D = .9356 before data compression.
After data compression using the proposed method, the loss
of the detection power is equal to AD = —.0085. Thus, the
relative loss of the detection power is .91%, which is ac-
ceptable in real applications.
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APPENDIX: THRESHOLDING UNDER
SATISFACTORY APPROXIMATION
ACCURACY CRITERIA

Because Parseval’s theorem holds for the orthogonal
wavelets (Chui 1992), the approximation losses/errors can
be obtained by using Equations (6) and (18):

¥ - F4)? = |C" — CAY%.

The approximation at the coarsest level VF in Equation (16)
is kept unchanged during the data compression (Donoho
and Johnstone 1994). Thus, the approximation loss is con-
sidered only on the detailed components. Thus, Equation
(A.1) can be written as .

>

P - P4 =
J€YkE[0,29~1]

2

j€),ke(0,27 —1]

(A.1)

I A2
(Cjk— jk)

(Ack)? (A2)

where cfk is the coefficient after thresholding using Equa-
tions (19) and (20) and Acjy = cg,c - ;‘k. So, Ac;j can be
obtained by

I o E
cix 1 cjp <A

BGE=1 0 if o, > (43
From Equations (A.2) and (A.3), it can be seen that
IF! — FA)2 = ||C" — CA|> <ma- (P2 (A4)
Because ||F/||2 = ||C?||?, Equation (A.4) can be rewritten
as
[ -FAR - CAR _na (E2 o
B2 Icri 1chi?

By substituting Equation (19) into Equation (A.5), a satis-
factory approximation accuracy limit can be achieved:

< .

[Received November 1997. Revised June 1999.]
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