
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Paynabar, Kamran]
On: 13 February 2011
Access details: Access Details: [subscription number 933436582]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

IIE Transactions
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713772245

Characterization of non-linear profiles variations using mixed-effect
models and wavelets
Kamran Paynabara; Jionghua (Judy) Jina

a Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

Online publication date: 13 February 2011

To cite this Article Paynabar, Kamran and Jin (Judy) , Jionghua(2011) 'Characterization of non-linear profiles variations
using mixed-effect models and wavelets', IIE Transactions, 43: 4, 275 — 290
To link to this Article: DOI: 10.1080/0740817X.2010.521807
URL: http://dx.doi.org/10.1080/0740817X.2010.521807

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713772245
http://dx.doi.org/10.1080/0740817X.2010.521807
http://www.informaworld.com/terms-and-conditions-of-access.pdf


IIE Transactions (2011) 43, 275–290
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/0740817X.2010.521807

Characterization of non-linear profiles variations using
mixed-effect models and wavelets

KAMRAN PAYNABAR and JIONGHUA (JUDY) JIN∗

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117, USA
E-mail: jhjin@umich.edu

Received November 2009 and accepted May 2010

There is an increasing research interest in the modeling and analysis of complex non-linear profiles using the wavelet transform.
However, most existing modeling and analysis methods assume that the total inherent profile variations are mainly due to the noise
within each profile. In many practical situations, however, the profile-to-profile variation is often too large to be neglected. In this
article, a new method is proposed to model non-linear profile data variations using wavelets. For this purpose, a wavelet-based mixed-
effect model is developed to consider both within- and between-profile variations. The utilization of wavelets not only simplifies the
computational complexity of the mixed-effect model estimation but also facilitates the identification of the sources of the between-
profile variations. In addition, a change-point model involving the likelihood ratio test is applied to ensure that the collected profiles
used in the model estimation follow an identical distribution. Finally, the performance of the proposed model is evaluated using both
Monte Carlo simulations and a case study.

Keywords: Change-point model, discrete wavelet analysis, functional data, likelihood ratio test, multiresolution analysis, process
monitoring

1. Introduction

The rapid development of embedded sensing and computer
technologies has led to online sensing and monitoring sys-
tems being increasingly used in manufacturing process con-
trol. In many practical situations, the sensor measurements
are shown as time-dependent functional data, which are
also called profile data or waveform signals. Some examples
include the welding force responses recorded in resistance
welding operations at uniform sampling time intervals (Chu
et al., 2004), the tonnage signature signals measured in
stamping processes, the equal crank angle sampling inter-
vals (Jin and Shi, 1999), the vertical density profile of a
particle board measured at fixed vertical depths (Walker
and Wright, 2002), and the ram force signals used to press
valve seats into engine heads in engine head assembly
processes.

Most of the previous research reported in the literature
has focused on linear profile monitoring; see, for example,
Kang and Albin (2000), Kim et al. (2003), Mahmoud and
Woodall (2004), Zou et al. (2006), Mahmoud et al. (2007),
and Jensen et al. (2008). Non-linear profile modeling and
monitoring has also generated increasing interest for the
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statistical process control of complicated profile data. For
example, Gardner et al. (1997) utilized a smoothing spline
to model non-linear profiles. Williams et al. (2007) used a
four-parameter logistic regression and smoothing spline to
model dose-response profiles to a drug. To monitor and dis-
tinguish out-of-control non-linear profiles in Phase I. Ding
et al. (2006) considered each profile as a high-dimensional
data set and applied Principal Component Analysis (PCA)
and independent component analysis to reduce the dimen-
sion of the non-linear profile data while preserving the
cluster structure of the profiles. Zou et al. (2008) used lo-
cal linear smoothers to monitor non-linear profiles. Zou
et al. (2009) applied the generalized likelihood ratio test
to develop a monitoring procedure for non-linear profiles
modeled by local linear kernel smoothing. To determine
the control limit, they used the bootstrap method based on
a few samples of in-control profiles.

In all of these studies it is assumed that the total vari-
ability of profiles can be modeled by random noises, which
are typically assumed to be Normally Independently Dis-
tributed (NID). The random noises are mainly used to
reflect the within-profile variation with a constant variance
over all measurement points. In many practical situations,
however, the variation among in-control profiles is too large
to be solely handled by NID noises. Growth curves (Ram-
say and Silverman, 1997), as shown in Fig. 1, are typical
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276 Paynabar and Jin

Fig. 1. Growth curves of 10 Swiss boys.

examples of such situations. Since the growth of one indi-
vidual generally differs from that of others, a large amount
of the profile variation is due to the person-to-person
growth variability, which may not be fully explained by
only the random noise within each person’s growth curve.

As another example (to be discussed in detail in Section
7), the inserting forces of a pressing machine (as shown in
Fig. 2) are used to press valve seat rings into an engine
head. These force signals are continuously recorded during
each cycle of repeated pressing operations. The overlapping
multiple samples of signals collected at different cycles of
in-control operations are shown in Fig. 2(a). Furthermore,
to show the magnitude of random noises within each pro-
file, an individual signal is also depicted in Fig. 2(b), in
which the dotted points represent the actual measurements,
and the solid line is profile fitted using the wavelet-based
denoising method. As can be seen in Fig. 2(b), the within-

profile variation obtained from the fitted model residuals et
is much smaller than the part-to-part (i.e., curve-to-curve)
variation shown in Fig. 2(a). In other words, a significant
portion of the total inherent variation is reflected in the
between-profile variation and is too large to be taken into
account solely using random noises corresponding to the
within-profile variation.

In practice, there are many causes for such inevitable
between-profile variations, such as part-to-part variation,
fixture or tooling tolerance, and/or process operation con-
dition variations. The between-profile variation may affect
the local profile shape differently at different segments
of a profile. In contrast, the within-profile variation is
mostly due to measurement errors and environmental dis-
turbances, which independently and identically affect all
observations of an entire profile. Therefore, characteriza-
tion and estimation of between-profile and within-profile
variations will not only help monitor the process more ef-
fectively but also provide us with a better understanding
of the root causes of process variations, which can expe-
dite further decision making for variation reduction and
process improvement.

Recently, advanced modeling methods have been devel-
oped for variation modeling of non-linear profiles that con-
sider both within-profile and between-profile variations via
mixed-effect models (hereafter called mixed models for sim-
plicity). For example, Mosesova et al. (2006) and Jensen
and Birch (2009) developed a parametric mixed model by
including a few model parameters as random effects to
reflect the between-profile variation. Applying a paramet-
ric model, however, is not always achievable because it
requires strong domain knowledge and major modeling

Fig. 2. Pressing force profile signals in a valve seat assembly operation: (a) overlapped multiple samples of profile signals and (b) one
original profile (dot) and fitted profile (line).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
y
n
a
b
a
r
,
 
K
a
m
r
a
n
]
 
A
t
:
 
1
7
:
2
1
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



Wavelet-based mixed model profile modeling 277

Wavelet 
transformation 

Step 1: denoising and 
estimating within-
profile variation  

Step 2: selecting and 
estimating random-effect 
coefficients for between-

profile variation  

LRT-based 
change-point 

model for 
clustering profiles 

Final 
parameters 
estimate for 
each cluster

Variation characterization 
by mapping wavelet 

coefficients into profiles 
segments 

Identified 
sources of 
variation

Nonlinear 
Profiles 

Two steps for mixed model estimation 

Fig. 3. Flow diagram of the proposed methodology.

efforts to identify an appropriate parametric model struc-
ture. To overcome this challenge, an alternative approach
that uses non-parametric mixed models has attracted in-
creasing attention. Mosesova et al. (2006) developed a
mixed model by using a B-spline basis, whereas Shiau
et al. (2009) used a random-effect B-spline model along
with PCA to monitor non-linear profiles. Although splines
and PCA are considered to be effective non-parametric
approaches to the modeling and analysis of smooth non-
linear profiles, they are inherently unable to model com-
plicated non-linear profiles with local sharp jumps or
non-differentiable points. The wavelet transform is a non-
parametric alternative that can be effectively used for mod-
eling non-linear profiles with sharp jumps.

One of the research challenges in using wavelets for pro-
cess monitoring is determining how to select a low dimen-
sion of monitoring features from the large dimension of the
wavelet coefficients. Jin and Shi (1999) developed a feature-
preserving wavelet-based thresholding method that extracts
monitoring features from complicated tonnage waveform
signals and then constructed a Hotelling’s T2 control chart
based on the unthresholded wavelet coefficients for stamp-
ing process monitoring (Jin and Shi, 2001). However, their
method is limited to detecting profile changes that are re-
flected by the selected unthresholded wavelet coefficients.
To overcome this problem, Jeong et al. (2006) presented
an adaptive thresholding procedure that threseholds the
wavelet coefficients of each incoming profile and updates
the selected coefficients based on those that are unthresh-
olded.

Chicken et al. (2009) developed a change-point model
based on the likelihood ratio test, in which all wavelet coeffi-
cients are taken into account. They showed that monitoring
wavelet coefficients is equivalent to evaluating the hypothe-
sis that the non-centrality parameter of a chi-square distri-
bution is equal to zero. They estimated the non-centrality
parameter based on the unthresholded coefficients, which
can reduce the variance of the estimator and consequently
improve the performance of monitoring methods. They
also showed that the change-point model outperforms the

methods proposed by Jin and Shi (2001) and Jeong et al.
(2006).

All of the previously mentioned papers on wavelet-
based monitoring approaches only consider the within-
profile variation in modeling the total profile variability.
Very little research has been done on wavelet-based profile
modeling or on monitoring methods that can account for
both within-profile and between-profile variations. There-
fore, the objective of this article is to develop a mixed
model based on wavelets for the following two purposes:
(i) to characterize non-linear profile variations by consider-
ing both between-profile and within-profile variations, thus
going beyond the existing wavelet-based non-parametric
modeling methods that account for only the within-profile
variation; and (ii) to characterize both global and local seg-
mental variation patterns by mapping scale/detail wavelet
coefficients into profile segments, which goes beyond the
existing methods (such as PCA or splines) that mainly char-
acterize global variations for smooth non-linear profiles.

In this article, the wavelet transform is selected by
considering its following three unique merits over other
non-parametric approaches: (i) wavelet-based modeling is
capable of fitting complicated non-linear profiles with sharp
jumps and non-differentiable points; (ii) the multi-scale
wavelet coefficients have the unique capability to separate
the within-profile noises (at the high-frequency range)
from the true profile signal (mainly at the low-frequency
range), which can significantly simplify the computation
for estimating the mixed model parameters; and (iii) the
mapping relationship between the multiresolution wavelet
coefficients and the local profile segments can facilitate
the identification of the sources of the between-profile
variation.

Implementing the proposed mixed model involves two
critical research issues. The first is to ensure that the
collected profile samples used for model estimation have
an identical mixed model distribution. It is well known
that combining samples from different distributions can
lead to a large estimation error for the model parameters,
thus resulting in a misleading model. For this purpose, a
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change-point model, which is used to group profiles based
on their distributions, is developed based on a Likelihood
Ratio Test (LRT). The other critical issue is knowing how
to reduce the computational effort to implement a mixed
model. It is well known that the computational effort re-
quired to estimate model parameters increases with the
number of random parameters. Demidenko (2004) recom-
mended a method for constructing a model starting with
one random coefficient and then adding more random pa-
rameters one-by-one if needed. However, this step-by-step
exploration approach may not be very effective consider-
ing the large number of wavelet coefficients transformed
from profile signals. Therefore, although wavelet transform
is an effective approach for modeling complex non-linear
profiles, implementing a wavelets-based mixed model is still
challenging. This article also discusses how to effectively se-
lect a low dimension for the wavelet is random effects in the
construction of the proposed mixed model, which can be
well suited for characterizing the between-profile variation.

The remainder of this article is organized as follows.
Section 2 provides an overview of the proposed method-
ology, and Section 3 gives a brief review of the wavelet
transform used for profile signals. The development of
the proposed wavelet-based mixed model is discussed in
detail in Section 4. In Section 5, an LRT-based change-
point model is developed to check that the selected
profile samples follow an identical distribution. The per-
formance of the proposed approach is examined through
both Monte Carlo simulations and a case study in Sec-
tions 6 and 7, respectively. Finally, conclusions are drawn in
Section 8.

2. Overview of the proposed methodology

A general framework of the proposed methodology is
shown in Fig. 3. First, the measured non-linear profile data
are transformed into the wavelet domain by using a selected
wavelet basis. Then, a mixed model is developed on the
wavelet coefficients, in which a two-step modeling approach
is developed that reduces the computational complexity in
the mixed model estimation. At the first step, a wavelet de-
noising thresholding is performed on each profile in order
to separate within-profile noise from between-profile vari-
ation. At the second step, in order to reduce the dimension
of the parameters in the mixed model, a few wavelet co-
efficients are selected to act as random effects. Then, the
LRT-based change-point model is applied to check the col-
lected profile samples follow an identical distribution. This
result is used to group profile samples based on their distri-
butions for further estimation of mixed model parameters.
Finally, a mapping between the wavelet coefficients selected
to acts as random effects and the profile segments is con-
ducted to facilitate the identification of variation sources.
The detailed analysis of each step will be elaborated in
subsequent sections.

3. Wavelet transformation for profile signals

Suppose there are m available profiles, each of which con-
sists of n pairs of (t, y) discrete observations that can be
generally described by

yi = fi (t) + εi for i = 1, . . . ,m, (1)

where yi is a vector of the discrete response measurements
of profile i, fi (.) is an unknown non-linear function of pro-
file i , t is a vector consisting of equally spaced sampling
time or distance data, and εi is a vector of NID noises with
εi ∼ MVN(0, σ 2I) to represent the within-profile variation,
where I is an n × n identity matrix.

The first step of the proposed procedure, as shown in
Fig. 3, is to transform each profile into the wavelet domain.
It is well known that any function g in L2(�), the square-
integrable functions space, can be expressed by a wavelet
series of the form of (Daubechies, 1992):

g(t) =
∑
k∈Z

c j0kφ j0k(t) +
∞∑

j= j0

∑
k∈Z

d jkψ jk(t)

Functions φ(.) and ψ(.) are known as the father and
mother wavelet basis, respectively. They are used to de-
compose function g into two parts corresponding to
low-frequency (coarse) and high-frequency (detail). The
multiresolution decomposition of the wavelets is performed
using a set of orthonormal wavelets φ j0k(t) = 2 j0/2φ(2 j0 x −
k) and ψ jk(t) = 2 j/2ψ(2 j x − k), for any non-negative inte-
ger j ≥ j0. The decomposed coefficients c j0k and d jk are
called the approximate and detail wavelet coefficients, and
they are determined by the inner product of g and the corre-
sponding wavelet functions; i.e., c j0k = 〈g, φ j0k〉,and d jk =
〈g, ψ jk〉, where 〈〉 represents the inner product operator.

When the number of discrete measurements (n) in
each profile is dyadic, i.e., n = 2J , where J is a pos-
itive integer number, a fast numerical algorithm called
the Discrete Wavelet Transform (DWT) algorithm can
be used to determine the wavelet coefficients (Mallat,
1999). The matrix form of DWT is represented as z =
Wy, where Wn×n is an orthogonal real matrix that de-
pends on the selected orthogonal wavelet basis, the vector
z = [cJ−l0, dJ−l0, dJ−l0+1, . . . , dJ−1]T represents all decom-
posed wavelet coefficients, and the superscript T denotes
the transpose operator. The elements of cJ−l0 denote the
approximate coefficient vector at the decomposition level
l0(1 ≤ l0 ≤ J), y can be represented by cJ , and dJ−l (l =
1, 2, . . . , l0) denotes the detail coefficient vector at the de-
composition level l. More details about the wavelets trans-
form can be found in Daubechies (1992) and Mallat (1999).

In this article, an orthogonal Haar transform is used
for the discretized profile data yi = fi (t) + εi and the re-
sulting wavelet coefficients are represented as zi = θ i + ε̃i ,
where θ i = W fi (t) is a vector of the true wavelet coefficients
transformed from the true profile function fi (t), zi = Wyi
is a vector of the empirical wavelet coefficients transformed
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from noisy profile yi , and ε̃i = Wεi is a random noise vec-
tor in the wavelet domain with ε̃i ∼ MVN(0, σ 2I).

4. Mixed model for the wavelet coefficients

To consider the between-profile variation, a mixed model,
in which a few wavelet coefficients are selected to act as
random effects, is utilized. Davidian and Giltinan (1995),
Pinheiro and Bates (2000), and Demidenko (2004) have
provided a comprehensive introduction to mixed models.
Commonly, parametric non-linear mixed models are con-
structed and the corresponding parameters are estimated
based on numerical methods that are computationally ex-
pensive and after do not converge when the number of
random effects is large. In contrast, the wavelet transform
approach provides a multi-scale linear transformation that
is able to separate a the within-profile variation from the
true between-profile variation. This ability of the wavelet
transform approach allows us to simplify the estimation of
the mixed model parameters.

To implement the mixed model based on wavelet coeffi-
cients, let θi = µ + bi , where µ is the vector of fixed effects
common to all profiles, bi is the vector of random effects of
profile i with bi ∼ MVN(0,�), and � is a positive-definite
matrix that represents the covariance structure of the ran-
dom effects. In this article, � is assumed to be a diagonal
matrix, which implies that the random effects are uncorre-
lated. The reason for this assumption is that the Maximum
Likelihood (ML) estimate of the covariance matrix can
become negative-definite if the sample size is less than the
dimension of the covariance matrix, especially in the case of
a wavelet-based mixed model where the number of wavelet
coefficients is often large. However, if the sample size is large
enough, the method presented in this article is applicable
to cases in which no restriction on the covariance matrix
structure (such as a diagonality assumption) exists. Fur-
thermore, such a diagonality assumption only restricts the
covariance among the random effects of between-profile
variations, which implies neither the independency nor a
constant variance across different data points within a pro-
file. We also assume that in the equation zi = µ + bi + ε̃i ,
bi is independent of ε̃i . Based on this mixed model, the
parameters of µ and bi can be effectively used to rep-
resent the profile mean and between-profile variation,
respectively.

In order to construct a wavelet-based mixed model, a
two-step modeling approach is proposed (Fig. 3). At the
first step, the within-profile variation is estimated and re-
moved through wavelet denoising thresholding of each
sample of profile signals. As a result, the sample-to-sample
variability of the remaining wavelet coefficients mainly re-
flects the between-profile variation. Therefore, at the sec-
ond step, the between-profile variation is estimated based
on the remaining wavelet coefficients using all collected
samples of profile signals if they follow an identical mixed

model distribution. The investigation of the distributions
among samples will be discussed in Section 5. In order to ef-
fectively estimate the mixed model parameters and identify
the major sources of variations, a data dimension reduction
approach is further explored by selecting a few significant
wavelet coefficients, that are sufficient to characterize the
majority of the between-profile variation. The following
two subsections will discuss the details of the proposed
two-step estimation of the mixed model parameters on the
wavelet coefficients.

4.1. Characterizing within-profile variation and denoising

In this subsection, wavelet-based denoising thresholding is
utilized to estimate and remove the within-profile variation
of noises ε̃i . As Mallat (1989) indicated, only a few wavelet
coefficients contribute to the original true function of pro-
files. Therefore, denoising thresholding can be effectively
applied to wavelet coefficients to remove the within-profile
variation.

Since the white noises equally contribute to the wavelet
coefficients, the soft thresholding approach introduced by
Donoho and Johnstone (1995) is applied with the following
thresholding rule:

η(zi ; σ̂i , n) = sign(zi )
(|zi | − σ̂

√
2 log n

)
I
(|zi | > σ̂

√
2 log n

)
, (2)

where η(·) is the soft thresholding function, I(·) rep-
resents an indicator function, sign(·) is the sign func-
tion, and σ̂ is the estimated standard deviation of
ε̃i and is calculated using σ̂ 2 = ∑m

i=1 σ̂
2
i /m, with σ̂i =

median(|di,J−1 − median(di,J−1)|)/0.6745, where di,J−1 are
the detail coefficients at the lowest decomposition level
(Donoho and Johnstone, 1995). Based on Equation (2),
if a coefficient is less than the threshold of σ̂

√
2 log n, it

will shrink to zero. The denoised profile data and wavelet
coefficients are denoted as ỹ and z̃, respectively. It is
known that the maximum of n independent Gaussian
white noises cannot exceed σ

√
2 log n when n is large (Fan,

1996); i.e., Pr(max |ε̃| ≤ σ
√

2 log n) → 1 as n → ∞ with
ε̃ ∼ NID(0, σ 2I). This implies that with a high probability,
all noises shrink towards zero when n is large. Thus, the
remaining coefficients approximate the wavelet coefficients
of the true profile signals.

As shown in Appendix A, for each profile, the con-
ditional variance of the denoised wavelet coefficients,
given bi denoted by σ 2

z̃ir
(r = 1, 2, .., n), can be calculated

as follows:

σ 2
z̃ir

=
{ (
µr

zir
(ζ ) − ζ

)2 + (
σ r

zir
(ζ )
)2
}
�

(
µzir − ζ

σ

)

+
{ (
µl

zir
(−ζ )+ζ )2+(σ l

zir
(−ζ )

)2
}
�

(−µzir −ζ
σ

)
−µ2

z̃ir
,

(3)
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280 Paynabar and Jin

where ζ is the threshold value σ
√

2 log n;µr
zir

(ζ ) andµl
zir

(ζ )
are the right and left truncated means of zir with truncation
point ζ , respectively; σ r

zir
(ζ ) and σ l

zir
(ζ ) are the right and left

truncated standard deviation of zir with truncation point
ζ , respectively; � (·) is the cumulative distribution function
of the standard normal distribution; µz̃ir is the conditional
mean of the denoised wavelet coefficients; and µzir = µr +
bir withµr and bir being the r th element of vectors µ and bi ,
respectively. The detailed derivations ofµz̃ir ,µ

r
zir

(ζ ),µl
zir

(ζ ),
σ r

zir
(ζ ), and σ l

zir
(ζ ) are given in Appendix A.

4.2. Characterizing between-profile variation

After denoising thresholding (Section 4.1), the true wavelet
coefficients θi can be estimated by the remaining denoised
wavelet coefficients z̃; that is,

θ̂i = z̃i and θi = µ + bi (4)

As a result, the remaining unthresholded empirical
wavelet coefficients can be used for modeling the between-
profile variation and estimating the remaining unknown
parameters of the mixed model. The ML estimate of µ is
obtained by

µ̂ =
m∑

i=1

z̃i
/

m. (5)

Let � z̃ represent the covariance matrix of the de-
noised wavelet coefficients. The ML estimate of � z̃ is
�̂ z̃ = diag[Ŝr ]; Ŝr = ∑m

i=1 (z̃ir − ¯̃zr )2/m for r = 1, 2, . . . , n,
where z̃ir is the r th denoised wavelet coefficient of the
i th profile and ¯̃zr is the sample mean of the r th denoised
wavelet coefficient among all profiles. Furthermore, it is
well known that � z̃ = var{E[z̃|bi ] } + E{var[z̃|bi ] }. In other
words, in the wavelet domain, the variance obtained from
the denoised coefficients of all profiles, � z̃, can be decom-
posed into the between-profile variation, var{E[z̃|bi ] }, and
the estimate’s variation caused by denoising each profile
E{var[z̃|bi ] }. Based on Equation (4), the term var{E[z̃|bi ] }
can be estimated by �̂, where �̂ is the estimate of the co-
variance matrix of bi . Also, the term E{var[z̃|bi ] } can be
estimated by Equation (3) provided that µzir and σ are re-
placed with µ̂r and σ̂ , respectively, where µ̂r represents the
r th element of µ̂. If the estimated E{var[z̃|bi ] } is denoted
by �̂ = diag[ν̂r ] for r = 1, 2, . . . , n, with ν̂r as the estimate
of σ 2

z̃r
, we can obtain Ŝr = λ̂r + ν̂r . Therefore, λ̂r can be es-

timated by λ̂r = (Ŝr − ν̂r )I(Ŝr − ν̂r > 0), with I(·) being an
indicator function.

4.2.1. Selecting wavelet coefficients with significant random
effects

To reduce the dimensionality of random effects in the mixed
model, only a small number of wavelet coefficients that have
large and significant random effects should be selected.

For this purpose, two rules are suggested in this article
for selecting appropriate wavelet coefficients in the mixed
model. Rule 1 is used to select wavelet coefficients with
larger contributions to the between-profile variance. Rule
2 is used to further check that the selected coefficients have
a significant random effect.
Rule 1: Wavelet coefficients with a larger variance are cho-
sen such that the cumulative variance contribution of the se-
lected random effects exceeds a threshold of Q(0 ≤ Q ≤ 1).
The contribution of each wavelet coefficient as a random
effect in the total between-profile variation is sorted by

qr = λ̂r

trace(�̂)
, λ̂1 > λ̂2 > . . . > λ̂n. (6)

Thus, the set of the selected wavelet coefficients can be
represented by

A =
{

z̃r |r ≤ arg min
k

{
k∑

d=1

qd ≥ Q

}}
.

Justification of Rule 1: The reason we use this criterion is be-
cause we are often interested in identifying the root sources
for only the top 100Q percent of total variations. To show
how qr is related to the between-profile variation, let � f (t)
denote the between-profile covariance matrix. As proved in
Appendix B, the total between-profile variance, calculated
by trace(� f (t)), can be explained by the total variance of
the random effects. That is, trace(� f (t)) = trace(�). There-
fore, the selected wavelet coefficients would be sufficiently
described as more than 100Q percent of the total between-
profile variation. There is no fixed value for the threshold
Q. The choice of Q is subject to the specific application.
Generally, a very small value of Q may result in information
loss about between-profile variation. On the other hand, as
will be explained in the next section, a very large value of
Q may lead to too many selected wavelet coefficients that
may affect the performance of the model used for grouping
profile data.
Rule 2: Each wavelet coefficient in A is tested to check that
it is a significant random effect.

For this purpose, the following hypothesis is formulated:{
H0 : λr = 0
Ha : λr �= 0 , r ∈ A.

The statistic Fr = ν̂r /Ŝr , r ∈ A is used to test the hy-
pothesis. If the calculated Fr is larger than the critical value
FC, then it can be implied that the random effect corre-
sponding to wavelet coefficient r is significant. The critical
value FC is obtained by the 100(1 − α)th, 0 < α < 1 per-
centile of the empirical distribution of Fr when there is no
random effect in the model that is obtained by the Monte
Carlo simulation.

Justification of Rule 2: As stated earlier, in the wavelet
domain, the estimated variance obtained from the denoised
coefficients of all profiles can be expressed by the estimated
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random effect plus the estimate’s variation caused by de-
noising each profile; i.e., Ŝr = λ̂r + ν̂r . Therefore, when the
value of ν̂r is close to the value of Ŝr , it indicates that the
corresponding random effect is not significant.

After using these two rules, the set of selected wavelet
coefficients with a significant random effect is denoted as

S, and 
U represents the remaining unselected wavelet
coefficients. Furthermore, if the distribution of coefficients
in 
S is identical, these coefficients can be used to esti-
mate the between-profile variation in the wavelet domain.
By applying the Inverse Discrete Wavelet Transformation
(IDWT), we can map the coefficients in 
S to the corre-
sponding local segments of profiles, which have significant
between-profile variability. The mapped segments of pro-
files contributing to the between-profile variation about the
process can further facilitate the identification of sources of
variations along with engineering knowledge. A case study
employing this mapping will be presented in Section 7.

5. LRT-based change-point model for clustering profiles

In estimating a mixed model, it is essential to ensure that
all the selected profile samples follow an identical distribu-
tion. Thus, a change-point model involving LRT (LRT-CP)
is used to check this condition. To develop the LRT-CP
model, it is assumed that if there is a change in the process
it only affects the mean of the profile distribution and the
covariance would remains constant. If LRT-CP finds more
than one group of profiles, the parameters of each group
are be re-estimated.

5.1. Construction of monitoring features

If all coefficients are directly considered in the LRT-CP,
the test power would decrease due to the “curse of dimen-
sionality.” To reduce the number of variables involved in
LRT-CP, we use the taxonomy of coefficients presented in
Section 4.2.1. It is widely known that the sample covari-
ance matrix is sensitive to changes in the sample mean;
i.e., if the mean of the process changes globally or lo-
cally, the estimated sample covariance matrix is inflated.
Therefore, the larger the sample variance of a wavelet co-
efficient, the more likely it is that the coefficient mean has
changed. Thus, coefficients with the random effect in 
S
are chosen as the monitoring features to be directly used
in LRT-CP. In order to further include the information of
unselected coefficients in 
U, these coefficients are added
together as a combined monitoring feature, which is defined
as γi = ∑

r∈R z̃ir , i = 1, 2, . . . ,m with R = {r ; z̃ir ∈ 
U}.
Since the elements of vector z̃ are NID, it yields:

γi ∼ N

(∑
r∈R

µr ,
∑
r∈R

Sr

)
.

Therefore, if there is a change in the coefficients in 
U,
it can be detected by γi . If we use γ̃ i to denote all the
selected coefficients in 
S, the monitoring feature vector
can be formed as γ i = [ γ̃ T

i γi ]T with γ i ∼ MVN(µγ ,�γ ),
where µγ and �γ represent the mean vector and covariance
matrix of the monitoring feature, respectively.

5.2. LRT-based change-point model

Various change-point models have been developed and
applied with great successes to analyze and group col-
lected observations. For example, an LRT-based change-
point model has been developed for univariate normally
distributed data (Sullivan and Woodall, 1996) and multi-
variate normally distributed data (Worsely, 1979; Sullivan
and Woodall, 2000; Zamba and Hawkins, 2006). Sullivan
(2002) developed a change-point model that was based on
a clustering approach. Recent research on process monitor-
ing using a change-point includes a method for monitoring
linear profiles (Zou et al., 2006; Mahmoud et al., 2007)
and for monitoring non-linear profiles using wavelet coef-
ficients in Phase II control charts (Chicken et al., 2009). In
addition to the change-point models, there is another set
of methods for grouping observations based on the cluster-
ing approach (see the work by Fraley and Raftery (1998),
Kothari and Pitts (1999), Ertoz et al. (2003), and Zhang
and Albin (2007)). The LRT-based change-point model,
however, is preferred in this article for two reasons. First,
for the purpose of grouping sequential observations, the
change-point model directly utilizes information related to
the data sequence order. Second, since the observations are
assumed to follow a normal distribution in this article, a
parametric model is preferred to a non-parametric model.
The LRT-based change-point model is a commonly used
parametric model-based approach. We extend the existing
change-point model by including wavelet coefficients with
random effects in order to account for the between-profile
variability.

Suppose that the mean of the profiles changes at an un-
known time τ . Assuming that the covariance matrix of
non-linear profiles is constant, the distribution of γ i can be
written as

γ i ∼
{

MVN(µ0
γ ,�γ ), i ≤ τ,

MVN(µ1
γ ,�γ ), i > τ,

(7)

where µ0
γ and µ1

γ represent the mean vectors before and
after the change, respectively. If all profiles are from an
identical distribution, then τ does not exist and µ0

γ = µ1
γ .

Therefore, in order to check whether the collected profile
data have an identical distribution, the following hypothesis
test can be evaluated:⎧⎪⎨

⎪⎩
H0 : E[γ i ]

i≤τ
= E[γ i ] = µ0

γ
i>τ

Ha : E[γ i ]
i≤τ

�= E[γ i ] = µ1
γ

i>τ

, τ = 1, 2, . . . ,m, (8)
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282 Paynabar and Jin

where E[·] is the expectation. An LRT is utilized to evalu-
ate the hypothesis test. As derived in Appendix C, the log
likelihood ratio can be expressed as


(τ ) = τ (m − τ )
m

m∑
i=τ+1

(
µ̂

1
γ − µ̂

0
γ

)T
�̂

−1

γ

(
µ̂

1
γ − µ̂

0
γ

)
, (9)

where

µ̂
0
γ =

τ∑
i=1

γi/τ , µ̂
1
γ =

m∑
i=τ+1

γi/(m − τ ),

and

�̂γ =
{∑τ

i=1 (γ i −µ̂
0
γ )(γ i −µ̂

0
γ )T+∑m

i=τ+1 (γ i −µ̂1
γ )(γ i −µ̂

1
γ )T

}
(m − 2)

.

The values of 
(τ ); (τ = 1, 2, . . . ,m) are compared with
a limit of L. If 
(τ ) < L for τ = 1, 2, . . .m, all profiles
are from an identical distribution. Otherwise, they can
be categorized into different clusters and the value of τ
maximizing 
(τ ) is an estimate of the change-point; i.e.,
τ̂ = arg maxτ=1,2,...,m
(τ ). If the LRT-CP detects a change,
the profile samples can be separated into two groups based
on the estimated change-point. Then, LRT-CP should be
applied to each group to check whether more clusters ex-
ist in each group. Using this approach, one can categorize
multiple change points and clusters. Additionally, know-
ing the estimated time at which the process changed could
help process engineers effectively detect the root cause(s)
of the change and identify the corresponding source(s) of
variations. It should be noted that the LRT-CP model is
often used to detect single and/or multiple sustained shifts
in historical profile data. If one is interested in identify-
ing outlier profiles, other methods such as multivariate T2

control charts with a robust estimator of the covariance
matrix (Vargas, 2003) can be utilized to examine the se-
lected wavelet coefficients with random effect and detect
outliers.

The limit L can be determined based on the desired Type-
I error (α). In this article, L is determined via simulations
since the values of 
(τ ) are not independent.

6. Performance evaluation using simulations

In this section, the performance of the proposed approach
is evaluated using Monte Carlo simulations. This is ac-
complished in two stages. First, the performance of the
proposed mixed LRT-CP model is assessed under differ-
ent change scenarios and compared with another wavelet-
based method recently proposed by Chicken et al. (2009),
in which the between-profile variation is not considered. As
mentioned earlier, if the collected profiles do not follow the
same mixed model, the estimation results are misleading.
In this article, two criteria are used for the performance
evaluation: probability of detecting a change in the mean

Fig. 4. Mallat’s function and randomly generated profiles.

(1 − β) and the average estimation of change time ( ¯̂τ ). In
the other stage, the accuracy of the proposed approach for
estimating the between-profile variation is checked. This
is evaluated based on the ratio of the standard deviations
of the estimated to actual random effects, denoted by λ̂/λ.
Since the case of multiple changes can be boiled down
to a single change case, only a single change is studied
here.

To simulate profiles, the popularly used piecewise smooth
function of Mallat (1999) is utilized to generate simulated
profiles, as shown in Fig. 4. This simulated function is a
complicated function with several non-differentiable points
that cannot be easily modeled by parametric models or
other non-parametric models such as splines. Addition-
ally, Chicken et al. (2009) used this function to evaluate
the performance of their monitoring procedure. Also, it
is assumed that the between-profile variations only oc-
cur at three segments: I1 = [32,55], I2 = [146,153], and
I3 = [207,236] as shown in Fig. 4, which cover 62 data
points, or 24% of the entire profile. In those segments,
each response yir , i = 1, 2, . . .m, r = 1, 2, . . . , n is gener-
ated based on yir = f (tr ) + b f

ir , where f (tr ) is the value
of Mallat’s function at tr , and b f

ir ∼ N(0, s2 f 2(tr )) is the
random effect with a coefficient of variation s, which sets
the standard deviation of each response yir to be propor-
tional to the value of its mean f (tr ). Finally, to include the
within-profile variation, NID noises with a mean of zero
and variance σ 2 = 1 are added to yir . Figure 4 shows the 50
simulated profiles with n = 256, t ∈ [1, 256], and s = 0.2.
An alternative procedure that can be used to simulate ran-
dom profiles is to generate both within- and between-profile
variations on the wavelet coefficients and then transform
the coefficients back to the original domain using IDWT.
In this article, we prefer to use the first procedure since
we are interested in modeling and characterizing variations
of original profiles. For the comparison purpose, similar
to Chicken et al. (2009), the Haar basis with the complete
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Fig. 5. Detection probability of the proposed LRT-CP model (M) and (C) that of the method proposed by Chicken et al. (2009).

decomposition (i.e., eight levels of decomposition) is used
to develop the wavelet-based mixed model.

In order to assess the capability of the methods in detect-
ing different types of profile changes, three change scenarios
with different magnitudes are examined.

Scenario 1: Overall mean change, where the whole profile
is shifted vertically; that is, µ1

γ = µ0
γ + δ(sµ0

γ + σ ).

Scenario 2: Local mean change in the segments
of [41, 46] and [208, 215] with µ1

γ = µ0
γ + δ(sµ0

γ +
σ ). These two segments contain the between-profile
variation.
Scenario 3: Local mean change in the segments of
[6,22], [89,106], and [129,145] with µ1

γ = µ0
γ + δσ . These

three segments are not comprised of between-profile
variations.
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284 Paynabar and Jin

Fig. 6. Q1, median, and Q3 of λ̂i/λi under different shift scenarios.

Furthermore, to investigate the performance sensitivity
to the parameters of m and τ , the simulations are carried
out for m = 75 and 150; τ = 0.5m and 0.8m with 1000 repli-
cations. Also, Q = 0.80 is used for all simulation scenarios.

To compare the performance of the methods, the limit
L is chosen so that the estimated probability of false

signal (α) is approximately equal to 0.05. In the pro-
posed method, the probability of the signal is estimated
by the proportion of simulation runs where at least one of

(τ ), τ = 1, 2, . . . ,m is plotted beyond L. Thus, the 95th
percentile of max
(τ ), τ = 1, 2, . . . ,m obtained from 1000
simulation runs is chosen as the limit L. It is clear that
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Table 1. L values for different p and m with α = 0.05

p

m 5 10 15 20 25 30 35 40 45 50

75 25.81 41.38 58.70 80.12 108.22 140.97 187.64 254.12 351.40 529.93
100 24.73 38.77 52.08 67.62 86.72 106.90 130.81 164.97 206.79 256.82
125 24.40 36.27 49.31 62.39 78.12 93.92 111.80 133.16 159.12 186.31
150 23.84 35.55 47.99 58.90 73.84 86.49 102.60 118.03 139.07 157.97
175 23.16 34.94 45.50 56.54 70.51 82.54 96.46 110.71 125.19 140.76
200 23.30 34.64 45.24 55.81 66.10 78.13 89.66 104.15 118.21 132.76
250 23.70 33.56 42.55 53.42 63.68 73.70 86.45 98.34 108.15 120.35
300 22.16 33.58 43.73 52.53 62.32 72.05 82.87 94.42 105.10 115.19
350 22.96 32.86 43.64 52.12 61.99 70.89 79.92 90.93 101.09 112.71
400 23.67 33.30 42.65 51.74 60.76 70.47 78.77 89.99 97.83 106.43
450 23.21 33.94 41.87 50.67 59.76 69.56 77.73 88.48 97.94 105.58
500 23.03 32.99 42.43 51.49 59.77 67.41 76.83 87.27 96.02 104.79

for a specific α, the value of L depends on the number
of collected profiles m and the dimension of γ i , denoted
as p. The estimated values of L based on 1000 simula-
tions for α = 0.05 under different m and p are provided in
Table 1.

The estimated detection probabilities for different change
scenarios are shown in Fig. 5. As can be seen from these
figures, under all scenarios and different values for the pa-
rameters m and τ , the proposed mixed LRT-CP method
outperforms The method of Chicken et al. (2009). This
is because the LRT-CP model accounts for the between-
profile variation, while the other does not do so. More-
over, the detection probability of LRT-CP is improved as
the number of sampled profiles (m) increases. Clearly, by
increasing m, the estimation of parameters in the mixed
model becomes more precise, thus resulting in this im-
provement. Also, the performance of LRT-CP is better
when τ = 0.5m than when τ = 0.8m. This is because in
the case of τ = 0.5m, there are equal samples available in
each group to estimate the parameters, which leads to a
better estimation for the two groups on average.

Table 2. Overall shift (Scenario 1)

δ

m τ 0.15 0.20 0.25 0.30 0.35 0.40

75 0.5m = 38 40.32 39.03 38.43 38.24 38.10 38.02
(0.59) (0.36) (0.17) (0.06) (0.02) (0.01)

0.8m = 60 43.86 52.50 58.98 60.18 60.07 60.02
(0.72) (0.61) (0.25) (0.03) (0.01) (0.01)

150 0.5m = 75 76.43 76.35 75.61 75.19 75.04 75.00
(0.79) (0.21) (0.06) (0.02) (0.01) (0.00)

0.8m = 120104.79 111.83 118.87 120.12 120.05 120.00
(1.18) (0.85) (0.35) (0.01) (0.01) (0.01)

Furthermore, the performance of change-point estima-
tion was also studied. The mean value and the standard
error (given in the parentheses) for each estimated τ by
using the LRT-CP method are shown in Tables 2 to 4. As
an example, under Scenario 2 with m = 150, τ = 75 and
δ = 0.60, a mean of the estimated change-point is 74.97
with a standard error of 0.07. Similar to the effect of τ and
m on the detection performance of LRT-CP, the perfor-
mance of the change-point estimator also improves when
m increases and/or when τ = 0.5m. Generally, the higher
the detection probability of LRT-CP, the more accurate
and precise is the change-point estimator. Based on Tables
2 to 4, it can also be seen that the absolute biases of the
estimated change points are all less than five, except for in a
few cases (where values are underlined). Therefore, the es-
timation performance of change points by using LRT-CP
is quite reasonable.

Furthermore, in order to investigate the performance
of the proposed approach in estimating the between-
profile variation, the ratio of λ̂r/λr , r = 1, 2, . . . , 62 was
calculated for every point within all three random-effect

Table 3. Local shift in random segments (Scenario 2)

δ

m τ 0.40 0.45 0.50 0.55 0.60 0.65

75 0.5m = 38 37.73 37.41 38.34 37.46 37.75 37.86
(0.44) (0.35) (0.31) (0.27) (0.24) (0.21)

0.8m = 60 52.21 53.11 56.11 55.81 56.33 57.13
(0.56) (0.52) (0.41) (0.42) (0.4) (0.32)

150 0.5m = 75 74.77 75.00 75.25 74.97 75.04 75.06
(0.25) (0.17) (0.12) (0.08) (0.07) (0.06)

0.8m = 120117.19 118.60 119.25 119.48 119.86 120.03
(0.51) (0.35) (0.25) (0.23) (0.10) (0.08)
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Table 4. Local shift in fixed segments (Scenario 3)

δ

m τ 1.50 2.00 2.50 3.00 3. 50 4.00

75 0.5m = 38 37.58 39.11 38.17 38.03 38.00 38.00
(0.57) (0.39) (0.1) (0.02) (0.01) (0.002)

0.8m = 60 40.03 51.63 57.92 59.19 59.85 59.99
(0.79) (0.55) (0.31) (0.19) (0.10) (0.01)

150 0.5m = 75 74.39 75.27 75.20 75.03 75.00 75.00
(0.70) (0.46) (0.11) (0.01) (0.00) (0.00)

0.8m = 120 106.46 114.85 116.68 119.48 120.01 120.00
(1.15) (0.80) (0.58) (0.21) (0.03) (0.004)

segments [I1, I2, I3]. In order to show the estimation per-
formance, we use the median of all λ̂r/λr ratios to assess the
average estimation performance and use the third and first
quartile values of λ̂r/λr , respectively denoted by Q3 and
Q1, to show the estimation uncertainty. The results under
different change scenarios with τ = 0.5m are presented in
Fig. 6. Values of λ̂r/λr greater and less than one imply over-
estimation and underestimation, respectively, while values
close to one indicate the unbiased estimates. From Fig.
6, it is clear that the medians of λ̂r/λr are close to one,
which shows that they have a very good average estima-
tion performance. In the case of m = 150, the estimates
are more stable than those for m = 75 across all δ values.
Therefore, the standard deviation estimates become stead-
ier when m is large. Moreover, when m = 75, the accuracy
of the estimates becomes more stable as δ increases. The
reason for this is that the detection probabilities of change
points increase as δ increases, thus resulting in the better
change-point estimates.

From Fig. 6, it can be observed that the variances of
random effects can sometimes be overestimated under a
scenario with a small shift, which is due to the poor per-

formance in detecting and estimating a change-point with
a small shift. An increase in the shift magnitude δ re-
sults in an improvement in the estimation performance
and the estimated variance approaches the true variance
(i.e., the ratio of λ̂i/λi is closer to one, as shown in Fig.
6). However, the stable value of λ̂i/λi is generally less than
one because in our mixed model, only a subset of ran-
dom effect coefficients is selected to explain the 100Q per-
cent the total between-profile variation. Therefore, with-
out the effect of the estimation error of change points,
the estimated variance should be less than the true total
variance.

In short, the simulation results show that the proposed
methodology has a reasonable performance in classifying
different groups of profiles as well as in characterizing the
variance of each group of profiles.

7. Case study

In this section, the proposed methodology is applied to
real-world profile data, which were collected for a valve seat
pressing operation that is performed as part of an engine
head assembly process. At every cycle of the pressing oper-
ation, a valve seat is pressed into a seat counterbore pocket
of a cylinder head, which generates one cycle of press force
signals, which becomes a sample of profile data. Pictures
of the engine head (upper left), valve seat pocket (lower
left), and pressing machine (right) are shown in Fig. 7. In
this process, one of the important quality characteristics is
the gap between the seat bottom and the pocket. However,
there is no automatic sensing technology for directly mea-
suring this gap during production. Another aspect to take
into account is that the product quality is very sensitive
to the pressing force on the ram, which can be measured
online by load sensors installed on the pressing machine.
Therefore, pressing force signals are often used for process

Fig. 7. Engine head (upper left panel), cross-section view of valve seat pocket and gap between valve seat and pocket (lower left panel),
valve seat assembly process (right panel).
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Table 5. Summary information of the fitted mixed model

Corresponding Corresponding Wavelet Wavelet Average of
profile wavelet coefficients mean random effect segmental

Segment observations coefficients (fixed effect) variances between-profile variance

a y57 − y73 c5,16 5.736 × 102 1.1163 × 105 1.7026 × 104

c5,19 1.076 × 103 5.9810 × 104

c5,17 8.129 × 102 4.8550 × 104

c5,15 1.238 × 102 4.1900 × 104

c5,18 8.951 × 102 2.4110 × 104

d5,19 −8.410 × 101 2.0460 × 104

b y74 − y92 c5,20 1.362 × 103 6.8650 × 104 1.1852 × 104

c5,21 1.525 × 103 5.0160 × 104

c5,22 1.538 × 103 3.4070 × 104

c5,23 1.464 × 103 2.4350 × 104

c5,19 1.076 × 103 5.9810 × 104

c y109 − y116 c5,28 1.998 × 103 3.8790 × 104 7.7238 × 103

c5,29 3.651 × 103 2.3000 × 104

control (i.e., reduction in the variation in pressing force
signals will lead to the improvement of product quality). In
this case study, 50 force profiles were collected for process
variation evaluation by the following analysis (as shown in
Fig. 8).

A mixed model was developed to characterize the process
variation using the methodology given in Fig. 3. Based on
Section 4.2.1, Q = 0.80 was used as the threshold for select-
ing the wavelet coefficients to create random effects in 
S.
The LRT-CP model presented in Section 5.2 was also used
to check whether all 50 profiles followed an identical dis-
tribution. The LRT-CP result indicated a change-point of
τ̂ = 42; thus these 50 profiles are clustered into two groups.
In Fig. 8, the profiles corresponding to clusters 1 and 2
are plotted with a solid line and a dashed line, respectively.

LRT-CP was also applied to the profiles within each group,
but it did not find a new change-point within each group
of profiles. Since the number of profiles in cluster 2 was
not large enough, only cluster 1 was used for further iden-
tification of the critical segments with a large variability.
A similar method could be applied to cluster 2 once more
profiles are collected.

In order to identify sources in variations in cluster 1, a
mixed model was constructed. Based on the fitted mixed
model, the estimated within-profile variance (σ̂ 2) was equal
to 82.28. The wavelet coefficients used to create random ef-
fects in
S were [c5,16, c5,20, c5,19, c5,21, c5,17, c5,15, c5,28, c5,22,
c5,23, c5,18, c5,29, d5,15]T in descending order of their vari-
ances. Then, the mapping of these coefficients in 
S to the
associated profile segments was conducted using IDWT.

Fig. 8. Force against time profiles.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
y
n
a
b
a
r
,
 
K
a
m
r
a
n
]
 
A
t
:
 
1
7
:
2
1
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



288 Paynabar and Jin

These mapped segments, along with their corresponding
coefficients, are shown in Fig. 8. There are three segments
that contribut 80% of the total between-profile variation.
Table 5 summarizes the obtained information for each seg-
ment and the corresponding between-profile variances. In
Table 5, we see that the between-profile variance is much
larger than the within-profile variance, which implies that
the sources of variations causing between-profile variations
are more important for process improvement. The wavelet
coefficients chosen to create random effects along with the
estimated mean and variance (reported in Table 5) can fur-
ther serve as a basis to implement control charts for process
monitoring.

Furthermore, based on the segments obtained from
IDWT and engineering knowledge, the sources contribut-
ing to the between-profile variations can be identified. The
variation in “segment a” is due to the position variations
of engine head surfaces. This source is mainly related to
the variation of initial contacting points induced by the
variation of an engine head’s pocket depth due to previ-
ous manufacturing stages. The clearance tolerance between
the valve seat and the seat packet is the major source of
variations for “segment b.” The pressure variation of the
assembly machine could be causing the force signal varia-
tion in “segment c.” The first two sources of the variations
are considered part-to-part variations, but the source for
“segment a” is related to the process variation at previous
manufacturing stages, while the source for “segment b” is
related to the current assembly process variation. The av-
erage between-profile variance for each segment can also
be obtained by adding up the variance of wavelet coeffi-
cients in each segment and dividing the sum by the length
of the segment. These values, reported in Table 5, can be
used to prioritize further actions for variation reduction
and process improvement.

8. Conclusions and future research

In most real applications, the total inherent variation of
profiles often consists of both within-profile and between-
profile variations. Characterizing both types of variations
and identifying their variation sources can be used to guide
proactive action to improve processes. In this article, a
mixed model was developed that is based on wavelet co-
efficients and is capable of modeling both types of varia-
tions for complex non-linear profiles. In constructing the
mixed model, an LRT-based change-point model was uti-
lized in order to check that the collected profiles used into
model estimation followed the same distribution. To re-
duce the computation complexity, a two-step estimation
procedure was developed for mixed model estimation. Fur-
thermore, a method for effective selection of monitoring
features was proposed in order to improve LRT-CP per-
formance. Monte Carlo simulations and a case study were

conducted to demonstrate the effectiveness of the proposed
approach.

In this article, it was assumed that within-profile noises
are IND. If the independency assumption does not hold, the
denosing procedure used for removing the within-profile
variation may not perform properly since the estimated
within-profile variance would be highly biased. Develop-
ing wavelet-based mixed models for modeling non-linear
profile data in the presence of autocorrelated noises will
be an interesting topic for future research. Furthermore,
the extension of the developed mixed model to online
process monitoring and diagnosis would be an interesting
development.
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Appendices

Appendix A: Derivation of µz̃i r and σ 2
z̃i r

First, we derive the conditional mean of denoised coeffi-
cients µz̃ir

µz̃ir = E [z̃ir |bir ]= E [sign(zir ) (|zir |−ζ ) I (|zir | > ζ ) |bir ]
= E [sign(zir ) (|zir | − ζ ) I (|zir | > ζ ) |(|zir | < ζ ) , bir ]

Pr(|zir | < ζ |bir )
+ E [sign(zir ) (|zir | − ζ ) I (|zir | > ζ ) |(|zir | > ζ ) ,

bir ] Pr(|zir | > ζ |bir )
= E [(zir − ζ ) |zir > ζ, bir ] Pr(zir > ζ |bir )

+ E [(zir + ζ ) |zir < −ζ, bir ] Pr(zir < −ζ |bir ). (A1)

Since zir |bir ∼ N(µzir , σ
2), the random variable

(zir |zir > ζ, bir ) follows a right truncated normal
distribution with parameters (µzir , σ

2, ζ ). Similarly,
(zir |zir < −ζ, bir ) follows a left truncated normal distribu-
tion with parameters (µzir , σ

2,−ζ ). Therefore, Equation
(A1) can be written as

µz̃ir = (
µr

zir
(ζ ) − ζ

)
�

(
µzir − ζ

σ

)
+ (
µl

zir
(−ζ ) + ζ

)
�

×
(−µzir − ζ

σ

)
, (A2)

where µr
zir

(·) and µl
zir

(·), respectively, are the right and left
truncated means of zir with truncation point (·) and can be
calculated by

µr
zir

(ζ ) = µ+
zir

φ((µzir − ζ )/σ )
�((µzir − ζ )/σ )

σ and

µl
zir

(−ζ ) = µ+
zir

−φ((−µzir − ζ )/σ )
�((−µzir − ζ )/σ )

σ, (A3)

where φ(·) is the probability distribution function of a nor-
mal standard random variable (Johnson and Kotz, 1970).
The conditional variance σ 2

z̃ir
is also obtained based on the

derived µz̃ir :

σ 2
z̃ir

= E
[
z̃2

ir |bir
]− µ2

z̃ir
= E[(zir − ζ )2 |zir > ζ, bir ]

× Pr(zir > ζ |bir ) + E[(zir + ζ )2 |zir < −ζ, bir ]
× Pr(zir < −ζ |bir ) − µ2

z̃ir

= {
E2 [(zir −ζ ) |zir >ζ, bir ]+var [(zir −ζ )

|zir > ζ, bir ] } Pr(zir > ζ |bir )
+ {E2 [(zir + ζ ) |zir < −ζ, bir ] + var [(zir + ζ )

|zir < −ζ, bir ] } Pr(zir < −ζ |bir ) − µ2
z̃ir
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=
{(
µr

zir
(ζ ) − ζ

)2 + (
σ r

zir
(ζ )
)2
}
�

(
µzir − ζ

σ

)

+
{ (
µl

zir
(−ζ ) + ζ

)2 + (
σ l

zir
(−ζ )

)2
}
�

×
(−µzir − ζ

σ

)
− µ2

z̃ir
,

where (σ r
zir

(·))2 and (σ l
zir

(·))2, respectively, are the right and
left truncated varainces of zir with truncation point (·) and
can be calculated by

(
σ r

zir
(ζ )
)2 = σ 2

[
1 − ((µzir − ζ )/σ )φ((µzir − ζ )/σ )

�((µzir − ζ )/σ )

−
(
φ((µzir − ζ )/σ )
�((µzir − ζ )/σ )

)2]
,

and

(
σ l

zir
(ζ )
)2 = σ 2

[
1 − ((−µzir − ζ ) /σ )φ ((−µzir − ζ ) /σ )

� ((−µzir − ζ ) /σ )

−
(
φ ((−µzir − ζ ) /σ )
� ((−µzir − ζ ) /σ )

)2
]
. (A4)

Appendix B: Proof of trace(� z̃) ≈ trace(� f (t)).

It is known that f (t) can be obtained by applying IDWT
to true wavelet coefficients, that is

f (t) = W−1θ. (A5)

Therefore, the covariance matrix of f (t) can be expressed
by

� f (t) = W−1var(θ)(W−1)T = W−1var(µ + b)(W−1)T

= W−1�(W−1)T. (A6)

This is true because µ is deterministic. Also, since W is an
orthogonal wavelet basis, it can be implied (W−1)T = W.

Taking the trace(.) yields

trace(� f (t)) = trace(W−1�W) = trace(W−1W�)
= trace(�). (A7)

Appendix C: Derivation of the LRT statistic

The log likelihood function under the alternative hypothesis
in Equation (8) can be written as

l1 = log

{
τ∏

i=1

h
(
γi ; µ

0
γ,�γ

) m∏
i=τ+1

h
(
γi ; µ

1
γ,�γ

)}

= −mc/2 log(2π) − m/2 log(|�γ|) − 1/2

×
τ∑

i=1

(
γi − µ0

γ

)T
�−1

γ (γi − µ0
γ) − 1/2

m∑
i=τ+1

(
γi − µ1

γ

)T
�−1

γ

(
γi − µ1

γ

)
, (A8)

where h(.) is the multivariate normal probability distri-
bution function, and c is equal to the cardinality of
�s .

Under H0, the corresponding log likelihood function
would be

l2 = log

{
m∏

i=1

h
(
γi ; µ

0
γ,�γ

)}

= −mc/2 log(2π) − m/2 log(|�γ|) − 1/2
m∑

i=1

(
γi − µ0

γ

)T
�

−1

γ

(
γi − µ0

γ

)
. (A9)

The maximum likelihood estimators for mean
parameters are µ̂

0
γ = ∑τ

i=1 γi/τ and µ̂
1
γ =∑m

i=τ+1 γi/(m − τ ), respectively. The estimate of �γ

is the pooled-sample covariance matrix; i.e., �̂γ =
{∑τ

i=1 (γi − µ̂
0
γ)(ϕi − µ̂

0
γ)T +∑m

i=τ+1 (γi − µ̂
1
γ)(γi − µ̂

1
γ)T}/

(m − 2). Replacing µ1
γ,µ

0
γ, and �γ in Equation (C1) by

their ML estimators, after simplification, the log likelihood
ratio can be expressed as


(τ )=l1−l2 = τ (m − τ )
m

m∑
i=τ+1

(µ̂1
γ − µ̂

0
γ)T�

−1

γ (µ̂1
γ − µ̂

0
γ)

.(A10)
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