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Abstract 

The property of nanocomposites is crucially affected by nanoparticle dispersion. 

Transmission Electron Microscopy (TEM) is the “golden standard” in nanoparticle dispersion 

characterization. A TEM Micrograph is a 2-dimensional (2D) projection of a 3-dimentional 

(3D) ultra-thin specimen (50~100 nanometers thick) along the optic axis. Existing dispersion 

quantification methods assume complete spatial randomness (CSR), or equivalently the 

homogeneous Poisson process as the distribution of the centroids of nanoparticles under 

which nanoparticles are randomly distributed. Under the CSR assumption, absolute 

magnitudes of dispersion quantification metrics are used to compare the dispersion quality 

across samples. However, as hard nanoparticles do not overlap in 3D, centroids of 

nanoparticles cannot be completely randomly distributed. In this paper, we propose to use the 

projection of the exact 3D hardcore process, instead of assuming CSR in 2D, to firstly 

account for the projection effect of a hardcore process in TEM micrographs. By employing 

the exact 3D hardcore process, the thickness of the ultra-thin specimen, overlooked in 



Quantifying Dispersion of Nanoparticles in Polymer Nanocomposites Through TEM Micrographs 
 

01/20/2014,  Li,  2 
 

previous research, is identified as an important factor that quantifies how far the assumption 

of Poisson process in 2D deviates from the projection of a hardcore process. The paper shows 

that the Poisson process can only be seen as the limit of the hardcore process as the specimen 

thickness tends to infinity. As a result, blindly using the Poisson process with limited 

specimen thickness may generate misleading results. Moreover, because the specimen 

thickness is difficult to be accurately measured, the paper also provides robust analysis of 

various dispersion metrics to the error of claimed specimen thickness. It is found that the 

quadrat skewness and the K-function are relatively more robust to the misspecification of the 

specimen thickness than other metrics. Furthermore, analysis of detection power against 

various clustering degrees is also conducted for these two selected robust dispersion metrics. 

We find that dispersion metrics based on the K-function is relatively more powerful than the 

quadrat skewness. Finally, an application to real TEM micrographs is used to illustrate the 

implementation procedures and the effectiveness of the method. 

Keywords: Nanoparticle Dispersion, Transmission Electron Microscopy, Poisson Process, 

Hardcore Process   

1 Introduction 

In recent years, polymer nanocomposites have attracted great interest in both 

nanomaterial research and industrial application [1-3]. Nanoparticles, in comparison with 

microparticles, have been found to offer polymers better mechanical, electrical and optical 

performance, etc. Homogeneous and aggregate-free dispersion of nanoparticles in the 

polymer matrix is essential for the manufacturing of nanocomposites, so as to realize their 

superior performance [4-5]. However, due to their small dimensions and high specific surface 
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areas, nanoparticles are easy to stick to each other and form micron-sized aggregates. At poor 

dispersion level of nanoparticles, the performance of nanocomposites degrades significantly 

and sometimes is even worse than that of microcomposites. In mechanics, large aggregates 

cause stress concentrations around them and induce pre-mature fracture of composite 

materials [6-9]. In electrical transmission industry, large aggregates may act as defects that 

induce partial discharge and early breakdown [10]. In optics, large aggregates can interfere 

with light propagation, thus decrease the transparency and increase the haze of nanocoatings 

[11].  

In the manufacturing process of nanocomposites, there are usually a number of factors 

that can affect the dispersion of nanoparticles and further the properties of nanocomposites. It 

is of great interest to learn how these factors may be selected so as to optimize the 

manufacturing process and in the end lead to an efficient process control procedure. 

Nanoparticle dispersion is intrinsically linked with both the process variables and the 

resulting properties of the nanocomposite. Moreover, since some tests on nanocomposite 

properties (e.g. fretting resistance) may be destructive, assessing nanoparticle dispersion may 

provide an effective surrogate for process optimization and control.  

Currently, nanoparticle dispersion is mostly evaluated by qualitatively interpreting 

micrographs taken from transmission electron microscopy (TEM) [12]. Because qualitative 

evaluation of TEM micrographs is subjective and may differ largely from one inspector to 

another, it cannot meet the demands for large-scale manufacturing processes in which an 

automatic quantification measure of nanoparticle dispersion is required. As a result, effective 

quantitative measures of nanoparticle dispersion through TEM micrographs are the 
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prerequisite for the mass production of nanocomposites.  

To perform TEM measurements, the sample material is first prepared into an 

ultra-thin specimen before placed onto the mesh copper grids for imaging (shown in Fig. 1a). 

The thickness of the ultra-thin specimen is approximately from 50 to 100 nanometers (nm), 

usually several times of the size of commonly used nanoparticles. The obtained image is a 

two dimensional (2D) projection (shown in Fig. 1b) of the three dimensional (3D) specimen 

along the optic axis (axis z in Fig. 1a) [13]. 

 

Figure 1.Illustration of the projection view of TEM micrographs. 

A key question to nanoparticle dispersion quantification is whether the nanoparticles 

form clusters in the material, and if yes how severe the clustering is. A number of methods 

have been proposed to achieve this goal. These methods generally fall into two categories. 

The first category assumes each nanoparticle as a point (e.g., the centroid of a nanoparticle) 

on the 2D micrograph and studies the distribution of all the points. It is directly related to the 

analysis of 2D spatial point patterns, which have been extensively studied in areas such as 

ecology, biology and astronomy [14-16]. For example, dispersion metrics based on quadrat 

counts and spatial distances have been used as direct quantifiers for the degree of 

nanoparticle dispersion [17-19]. Algorithms based on the Dirichlet tessellation [20, 21] and 

the rotating axis [22] have also been shown to be effective in distinguishing clustering point 
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patterns. The complete spatial randomness (CSR) or equivalently the homogeneous Poisson 

process has long been used as the “standard” model for 2D spatial point patterns [14]. It 

assumes that the number of points falling into any region follows a poisson distribution with 

an expectation proportional to the area of the region. It also assumes that the numbers of 

points falling into two disjoint regions are independent from each other. In particular, given a 

fixed number of n points, the n points are independent and uniformly distributed. Under the 

null hypothesis of CSR, the aforementioned methods have been compared with respect to 

their detection power for clustering [23]. The second category mainly focuses on the 

unreinforced domains of polymers, i.e., the space free of nanoparticles. Proposed dispersion 

metrics include the mean inter-particle distance [24-26], a measure of the deviation from the 

mean inter-particle distance, called the “free-path spacing” [27] and the length of the largest 

area for which the mode of particle number is zero, called the “free-path length” [28]. 

Another interesting idea is to use the expansion pattern of nanoparticles on the binarized 

image of the TEM micrograph to differentiate different specimens [29].  

In general, dispersion metrics can be used either as test statistics for a statistical test of 

clustering or as direct quantifiers for the degree of clustering to compare different samples. 

Existing methods employ 2D CSR as the “standard” model of random nanoparticle 

distribution [23, 27]. In addition, sample comparison is based on the absolute magnitudes of 

dispersion metrics. These approaches are valid only if CSR is the correct “standard” model 

and the “standard” models for different samples can be assumed to be the same. In reality, a 

TEM micrograph should be considered as a 2D projection of the 3D ultra-thin specimen, so 

the “standard” model should actually originate from a 3D random distribution and then 
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project onto 2D. If the distribution for centroids of nanoparticles were CSR in 3D, the use of 

CSR would be valid. However, as most nanofillers are hard particles that cannot overlap in 

3D, the centroids of nanoparticles cannot be completely random in 3D, i.e., they are subject 

to constraints. As an example, for spherical nanoparticles, the constraint in 3D is equivalent 

to set the minimum distance between the centroids of any two nanoparticles to be equal to the 

sum of their radiuses. This type of model is named as the “hardcore” process in spatial 

statistics. To our knowledge, there is little investigation on how the behavior of dispersion 

metrics is affected by employing the projection of a 3D hardcore process as the “standard” 

model. Although the concept of a random hardcore model has been used to construct a 

dispersion metric based on the Delaunay network [30], the hardcore constraint was put on the 

2D micrographs rather than on the exact 3D distribution of nanoparticles. Apparently, under 

the 3D hardcore model, aggregates with multiple particles can be observed in 2D although 

these particles do not overlap at all in 3D (shown in Fig. 1a and 1b).  

The hardcore process exhibits more regular patterns than the Poisson process. In 

addition, unlike the Poisson process, the distribution of the 2D projection of a 3D hardcore 

process may depend on the thickness of the thin specimen under imaging. The effect of 

thickness needs to be incorporated for more accurate inferences, which, however, is ignored 

in the existing methods. This paper attempts to explore the possible gap between the currently 

available dispersion quantification methods and the proposed method to consider the exact 

projection of 3D hardcore process.  

Another question arises whether 2D TEM micrograph can represent the dispersion of 

3D materials. Attempts have been made to relate TEM observations to 3D dispersion 
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parameters through stereology analysis [25, 31]. However, length is considered as an 

observation from a cross-sectional plane of the 3D material and the projection effect of TEM 

micrographs is completely ignored. This negligence may severely impact the stereological 

relationships between nanoparticles if the thickness of the thin specimen is comparable to the 

size of nanoparticles [32]. In this paper, the representativeness of 2D TEM micrographs for 

3D thin specimens is also investigated through simulations. 

To limit the scope of this paper, we focus on the distribution behaviors of centroids of 

nanoparticles or aggregates. To investigate representatives of 2D dispersion measures for 3D 

dispersion, we will mainly discuss the commonly used quadrat-based methods and the 

distance-based methods. In addition, the number of nanoparticles/aggregates, closely related 

to the ‘TEM dispersion’ [33] will also be investigated.   

The rest of the paper is organized as follows. In Section 2, the hardcore process in 3D 

is introduced as the “standard” model for nanoparticle dispersion in 3D, which is compared 

with the current practice using a Poisson process. In Section 3, the detailed characteristic 

analysis of dispersion metrics under the hardcore process is provided through simulations. 

Specifically, the dispersion metrics to be investigated are introduced first, and then the 

selection of robust dispersion metrics insensitive to the claimed thickness of the specimen is 

discussed. Afterwards, power analysis is conducted to compare those selected robust 

dispersion metrics. In Section 4, real TEM micrographs are analyzed to demonstrate the 

implementation procedures and the effectiveness of the proposed methods. Finally, we 

conclude the paper in Section 5. 

2 Basis of the Proposed Hardcore Process 
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The projection of a 3D hardcore process onto 2D reflects both the working principle 

of TEM and the practical distributional constraints of hard nanoparticles, so it is proposed as 

the “standard” model for nanoparticle dispersion in a TEM micrograph. In this paper, we 

focus on a simple scenario, in which nanoparticles are uniform-size spheres in 3D and their 

diameters are smaller than the thickness of the thin specimen. Then the hardcore constraint is 

equivalent to that the distance between the centroids of any two nanoparticles cannot exceed 

the diameter of a nanoparticle. 

Let l, w and h denote the length, width and thickness of the field of view for the TEM 

micrograph and ࣢ ൌ ሾ0,ݓሿ ൈ ሾ0, ݈ሿ ൈ ሾ0, ݄ሿ	denote the 3D imaging region. Let r denote the 

radius for a nanoparticle and ࢞ ൌ ሼ࢞૚, … , ሽ࢔࢞  with ࢏࢞ ൌ ሺݔ௜ଵ, ,௜ଶݔ ௜ଷሻݔ ∈ ࣢  represent 

centroids of n nanoparticles. Then the probability density for a 3D hardcore process	࢞	can be 

written as: 

݂ሺ࢞ሻ ൌ ൝
1

ߙ ∗ ሺ݄݈ݓሻ
, ݂݅ฮ࢏࢞ െ ฮ࢐࢞ ൐ ݅			ݎ2 ് ݆

0																																															otherwise
											 

where	‖ݑ െ  is the normalizing ߙ denotes the 3D Euclidean distance between u and v and‖ݒ

constant to make the integration of ݂ሺ࢞ሻ over ࣢	equal	to	one. A Poisson process with n 

points in	࣢	is simply a uniform distribution in	࣢. So the intensity of the hardcore process is 

equivalent to that of the Poisson process conditioned on the event that no two points lie closer 

than 2r units apart. Then ߙ	 has a probabilistic meaning 	1 െ ߙ ൌ P൫∪ଵஸ௜ஷ௝ஸ௡ ௜௝൯ܣ , 

where	ܣ௜௝ ൌ ൛ฮ࢏࢞ െ ฮ࢐࢞ ൑  is to	ߙ The closer .࣢	uniformly distributed in	࢐࢞	and	࢏࢞	with	ൟݎ2

one, the more similar the hardcore process is to the Poisson process in 3D. Generally,	ߙ is 

not in tractable forms. The upper and lower bounds for	ߙ	can be derived and are given in 

Proposition 1. The proof of Proposition 1 can be found in the Appendix. 
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Proposition1. For any n and w, l, h>4r, the following inequalities hold: 

௅ ൑ 1 െ α ൑ ௎ 

௅ ൌ maxሼݏଵሺ݊ሻ
ଷݎߨ

݄݈ݓ
െ ଶሺ݊ሻሺݏ

ଷݎߨ

݄݈ݓ
ሻଶ, 0ሽ, 

௎ ൌ minሼݐଵሺ݊ሻ
ଷݎߨ

݄݈ݓ
െ ଶሺ݊ሻሺݐ

ଷݎߨ

݄݈ݓ
ሻଶ ൅ ሺ	ଷሺ݊ሻݐ

ଷݎߨ

݄݈ݓ
ሻଷ, 1ሽ, 

where the detailed forms of ݏଵሺ݊ሻ, ,ଶሺ݊ሻݏ ,ଵሺ݊ሻݐ  .are in the appendix	ଷሺ݊ሻݐ	݀݊ܽ	ଶሺ݊ሻݐ

The distinction of the hardcore process from the Poisson process is governed by all of 

its parameters. But some of these parameters can be considered known a priori for a TEM 

experiment. For example, the micrograph size w and l can be determined from the 

magnification factor when taking the TEM micrograph; the radius r can usually be obtained 

from the source information of the raw material. As a result, the number of nanoparticles n 

and the thickness of the thin specimen h are two key parameters that affect how far away a 

Poisson process deviates from the hardcore process. This result can help judge the application 

region beyond which the existing dispersion quantification methods using the Poisson 

process model may fail. 

Table 1 provides the bounds calculated from Proportion 1 for varying h and n when 

other parameters are set the same as the real TEM micrographs studied in Section 4 

(w=l=1067nm and 2r=21nm). Two different numbers of nanoparticles n under evaluation are 

set as	݊ଵ ൌ423 and	݊ଶ ൌ1409, which correspond to the expected number of nanoparticles 

whose centroids follow the hardcore process under a specimen thickness of 60nm, for a 

content of nanoparticles at 3% or 10% respectively. These settings for the number of particles 

are also investigated in the simulation study in Section 3. For a fixed n, the lower and upper 
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bounds approach each other when h increases to a much larger magnitude than the radius r of 

nanoparticles. Under the extreme case, when h goes to infinity and n is fixed, ߙ approaches 

one. As a result, if h is large enough, there is little difference between the hardcore process 

and the Poisson process. In case of a fixed h, increasing n results in a fast decrease of	ߙ. 

Therefore, in order for a hardcore process to converge to the Poisson process, a larger h is 

required with increasing n.  

Table 1.The lower and upper bounds for	α. 

h(݉ߤ) ݊ଵ=423 ݊ଶ=1409 
lower upper simulated lower upper simulated 

10 0.74 0.75 0.75 0 1 0.04 
100 0.97 0.97 0.97 0.72 0.72 0.72 
1000 1 1 1 0.97 0.97 0.97 
10000 1 1 1 1 1 1 

In practice, the number of nanoparticles n can be obtained through image processing 

techniques, which will be discussed in Section 4. So, n can also be pragmatically fixed for a 

given TEM micrograph. In this case, h is the only parameter that affects how far away a 

Poisson process deviates from the hardcore process. As a direct application of Proposition 1, 

the following proposition can be obtained. 

Proposition 2. For fixed w, l, r and n, the hardcore process in ࣢converges to the 

Poisson process in ࣢as h→∞. As a result, the projection of the hardcore process in ࣢ 

onto ܹ ൌ ሾ0, ݈ሿ ൈ ሾ0,  .∞→ሿ converges to a Poisson process in W as hݓ

The interpretation of Proposition 2 is intuitive. When h goes to infinity with all the 

other parameters fixed, the randomly distributed nanoparticles tend to be highly dispersed in 

space, and therefore the hardcore constraint does not play a role anymore. Proposition 2 

provides an intrinsic relationship between the projection of the 3D hardcore process and the 
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Poisson process in 2D. In fact, the Poisson process can be seen as a projected hardcore 

process with infinite thickness. In practice, the thickness of the thin specimen under TEM 

imaging is rarely larger than 100nm, much smaller than the required h for the hardcore 

process to converge to the Poisson process. Therefore, blindly using the Poisson process for 

hypothesis testing or dispersion quantification may generate misleading results. In addition, 

Proposition 2 also indicates that the thickness h of the thin specimen is an important factor in 

judging whether a Poisson process can be approximately used. The impact of varying h on 

the distribution of dispersion metrics under the projected hardcore process will be studied 

extensively through simulations in Section 3.2. The simulation of the hardcore process in 3D 

can be conveniently done via Markov Chain Monte Carlo simulation algorithms [34]. 

3 Characteristic Analysis of the Dispersion Metrics 

Dispersion metrics based on spatial statistics have been studied extensively under the 

Poisson process. However, their characteristics under the proposed hardcore process are still 

elusive. We analyze them in this section. In Section 3.1, the related dispersion metrics under 

consideration in this paper are introduced. In Section 3.2, following the conclusion in 

Proposition 2, the impact of the specimen thickness h on the use of dispersion metrics is 

investigated through simulations, based on which the robust dispersion metrics insensitive to 

the misspecification of h are selected. In Section 3.3, we further evaluate the performance of 

those selected robust dispersion metrics on detecting clustering patterns through simulations. 

3.1 Dispersion Metrics to be Studied 

Two most commonly used types of dispersion metrics, which are based on spatial 
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statistics and the number of aggregates, are selected to be evaluated under the projected 

hardcore process. Detailed definitions of those dispersion metrics as well as their 

applicability are provided in Table 2. The quadrat-based and the distance-based metrics can 

be applied to point patterns generated from the centroids of 3D nanoparticles, and the 

centroids of either nanoparticles or aggregates projected in 2D. Since nanoparticles do not 

overlap and thus do not form aggregates in 3D, the dispersion metric based on the number of 

aggregates can only be calculated based on the projected nanoparticles in 2D.  

The quadrat-based and the number-of-aggregates-based dispersion metrics are explicit 

summary statistics of nanoparticle dispersion, so they may be directly used to quantify 

nanoparticle dispersion or serve as test statistics for hypothesis testing. The distance-based 

methods provide function summaries of dispersion, i.e., an estimated curve instead of a single 

number for each micrograph. Thus the corresponding one-dimensional summary statistic has 

to be provided based on some distance metric to a reference curve. In this paper, the 

integrated squared error of the estimated curve from the null hypothesis curve under a 

projected hardcore process is used.  This is a two-sided test statistic, i.e., it does not 

differentiate between point patterns that are more regular or more clustered than the projected 

hardcore process. For the K and G functions, a higher value than the reference suggests 

clustering, while for the F function, a lower value than the reference suggests clustering. So, a 

one-sided test statistic	Tଶ is also considered.  

Table 2. Definitions and applicability of dispersion metrics. 

Quadrat-based methods: 3D or 2D particle-based and 2D aggregate-based 

 Index of dispersion (ID): ID ൌ ሺ݇ െ 1ሻݏଶ/̅ݖ 
 Shannon entropy (SE):	SE ൌ െ∑ ௜ሻ݌௜logሺ݌

௞
௜ୀଵ  
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 Skewness (SK):	SK ൌ ௞

ሺ௞ିଵሻሺ௞ିଶሻ
∑ ቀ

௭೔ି௭̅

௦
ቁ
ଷ

௞
௜ୀଵ  

k: the number of quadrats; ݖ௜: the number of points in the i-th quadrat; 

̅ݖ ൌ ∑ ݇/௜ݖ
௞
௜ୀଵ ; sൌ ට∑ ሺݖ௜ െ ሻଶ௞̅ݖ

௜ୀଵ /ሺ݇ െ 1ሻ; ݌௜ ൌ ∑/௜ݖ ௟ݖ
௞
௟ୀଵ . 

Distance-based methods: 3D or 2D particle-based and 2D aggregate-based 

 K function: Kሺݐሻ ൌ ଵ

ߣ
Eሾ݊ሺ࢞ ∩ ܾሺݑ, ݑ|ሽሻݑሻ\ሼݐ ∈  ሿ࢞

 F function: Fሺݐሻ ൌ Pሺܾሺݑ, ሻ࢞ ൑  ሻݐ
 G function: Gሺݐሻ ൌ Pሺܾሺݑ, ሽሻݑሼ\࢞ ൑ ݑ|ݐ ∈  ሻ࢞
λ:	the intensity of the point process; x: the point process;	ܾሺݑ, ሻݐ ൌ ሼ:ݒ	ݑ‖ െ ‖ݒ ൑
,ݑܾሺ	ሽ;ݐ ሻ࢞ ൌ argmin௩∈ݑ‖࢞ െ  .ሽ: the point process x excluding uݑሼ\࢞	;‖ݒ

ଵܶ ൌ ሻݐ෡ሺܪሾ׬ െ 	;ݐሻሿଶ݀ݐሺܪ ଶܶ ൌ ׬ ሻݐ෡ሺܪൣ െ ሻ൧ݐሺܪ
ଶ
஽ሺ௧ሻݐ݀ , where ሻݐ෡ሺܪ denotes the 

estimated K, F or G function and ܪሺݐሻ denotes the reference function;	ܦሺݐሻ ൌ
ሼܪ෡ሺݐሻ ൒ ሻݐሺܦ ሻሽ for the K and G functions andݐሺܪ ൌ ሼܪ෡ሺݐሻ ൏  ሻሽ for the Fݐሺܪ
function. 

TEM dispersion: 2D particle-based 

 Number of aggregates (N୬/ୟ): N୬/ୟ ൌ #ሼ ௜ܻ: ݀ሺ ௜ܻ, ௜ܻሻ ൏ ,ݎ2 ݀൫ ௜ܻ, ௝ܻ൯ ൒ ,ݎ2 ݅ ് ݆ሽ, 

where ሼ ଵܻ, … , ୒ܻ౤/౗ሽ	forms a partition for a 2D point process	ሼݕଵ, … , ௡ሽݕ ∈ ܹ; 

݀ሺ ௜ܻ, ௜ܻሻ ൌ max௨∈௒೔ ݀ሺݑ, ௜ܻሻ , where ݀ሺݑ, ௜ܻሻ ൌ min௩∈௒೔‖ݑ െ ‖ݒ ; ݀൫ ௜ܻ, ௝ܻ൯ ൌ

min௨∈௒೔ ݀ሺݑ, ௝ܻሻ. 

Although all the above metrics can quantify the dispersion of nanoparticles to some 

degrees, there is no consensus on the choice of the metrics for real applications, even under 

the Poisson process assumption. In the following two subsections 3.2 and 3.3, we shall 

systematically investigate the robustness of these metrics under a certain misspecification of 

the thin specimen thickness and their detection power against clustering, respectively. 

3.2 Robustness of the Dispersion Metrics 

For a TEM experiment with a fixed magnification factor level and a fixed size of 
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nanoparticles, the remaining two parameters affecting 2D projection of the hardcore process 

are the number of nanoparticles and the specimen thickness. The particle number information 

can usually be obtained from image processing, but the exact thickness h is usually hard to 

obtain. Usually, rough thickness estimation can be obtained by using the thickness control 

parameter during TEM sample preparation using ultramicrotome. However, the tolerance in 

error can be in tens of nanometers. An illustrative example for the potential impact of h on the 

distribution of dispersion metrics is shown in Fig. 2. 

 

 
Figure 2.Illustrative example of the impact of h on dispersion metrics. 

For w=l=1067nm, r=10.5nm and a fixed number of n=1409 nanoparticles, the 

projected hardcore process with a true specimen thickness ݄଴	of 50nm (solid), 60nm (dash), 

and 70nm (dot) as well as the Poisson process (dot and dash) are simulated. The probability 

density functions (PDF) for the number of aggregates under the above four processes are 

estimated from 10000 replicated simulations for each process using kernel density estimates 

and are plotted in Fig. 2. It is seen that the PDF under the Poisson process is almost 
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completely separated from the PDF under a projected hardcore process with a limited	݄଴. 

Even when the specimen thickness is not very different from one another (50nm to 70nm), 

the PDFs still shift dramatically. This phenomenon implies that h makes a substantial impact 

on the use of the number of aggregates as a test statistic or as a direct dispersion quantifier. 

For example, assume that a number of 687 aggregates (indicated by the dashed vertical line in 

Fig. 2) are observed on a TEM micrograph, which corresponds to the 5th percentile of the 

dashed PDF with		݄଴ ൌ 60nm. If the claimed thickness of specimen is	50nm, the dashed 

vertical line is far to the left tail of the solid PDF with	݄଴ ൌ 50nm.		This misleadingly 

indicates more severe clustering for the specimen with a claimed thickness of 50nm than that 

of 60nm. On the contrary, for the specimen with a claimed thickness of 70nm or being very 

thick, which is corresponding to the null hypothesis of	݄଴ ൌ 70nm	or	݄଴ ൌ ∞ሺPoissonሻ, the 

statistical test for clustering yields a higher p-value, thus misleadingly concluding less 

clustering than under	݄଴ ൌ 60nm. This example shows that the claimed thickness of a 

specimen may possibly affect results for statistical testing and sample comparison using 

dispersion metrics of nanoparticles.  

Considering that it is generally difficult to exactly measure the thickness of a 

specimen, it is desirable to identify some robust dispersion metrics so that their performance 

are little sensitive to misspecification of specimen thickness. For this purpose, the following 

simulation studies are conducted to systematically evaluate the potential impact of h on 

various dispersion metrics based on observations on 2D micrographs. Specifically, the 

robustness of a dispersion metric is evaluated by comparing its Type I error rate under a 

claimed specimen thickness h with a nominal Type I error rate of 0.05 under the true 
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specimen thickness ݄଴	(݄଴ ് ݄). The detailed simulation conditions/parameters are given 

below: 

 w=l=1067nm; r=10.5nm; 

 Number of nanoparticles(n): ݊ଵ=423, ݊ଶ ൌ 1409;  

 True section thickness:	݄଴ ൌ 50,	60 or 70nm; 

 Claimed section thickness h=50, 60, 70nm and ∞ (Poisson); 

 Number of duplicates for each setting: 10000. 

For the quadrat-based metrics, w and l are both equally divided into S (set to be 5, 15 

and 25) parts, so the number of quadrats on a micrograph satisfies the condition of k=SൈS. 

For the dispersion metrics SE and	N୬/ୟ, a smaller value indicates clustering. So their negative 

numbers are used as the test statistics. For the quadrat-based and the 

number-of-aggregates-based metrics, Type I error rate can be calculated as	Pሺ ௛ܶబ ൒  ,଴.଴ହ,௛ሻܥ

where ௛ܶబ denotes the corresponding test statistic under a projected hardcore process 

with	true	݄଴ and ܥ଴.଴ହ,௛ denotes the 95th percentile of the test statistic under a projected 

hardcore process with ݄. 

For the distance-based metrics, Type I error rate for the two-sided test can be 

calculated as	Pሺ ଵܶ,௛బ,௛ ൒ ଴.଴ହ,௛ሻ, where ଵܶ,௛బ,௛ܥ ൌ ሻݐ෡௛బሺܪൣ׬ െ ሻ൧ݐ௛ሺܪ
ଶ
dݐ and ܥ଴.଴ହ,௛ is the 

95th percentile of ሻݐ෡௛ሺܪൣ׬ െ ሻ൧ݐ௛ሺܪ
ଶ
dݐ , whereܪ෡௛బሺݐሻ and ܪ෡௛ሺݐሻ  denote the estimated 

function under the hardcore process with a specimen thickness of		݄଴ and h, respectively. The 

true function ܪ௛ሺݐሻ is obtained through averaging the results over 5000 duplicates in the 

simulation. The one-sided test can be similarly conducted. Type I error rates calculated from 

the simulations are presented in Tables 3~5 corresponding to quadrat-based, distance-based, 
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and the number-of-aggregates-based dispersion metrics, respectively.  

In Table 3, S=5, 15 and 25 are used in the simulations. For S=25, the area of each 

quadrat is approximately 17 and 5 times as large as the average effective particle/aggregate 

size for ݊ଵ ൌ 423 and 	݊ଶ ൌ 1409 , respectively. This quadrat size is smaller than the 

suggested quadrat size in literature [35]. The reason of not selecting an even larger S is its 

high sensitivity to the claimed specimen thickness, which can be seen from Table 3. The 

robustness of the dispersion metrics deteriorates when S or the number of nanoparticles n 

increases, and when particle centroids instead of aggregate centroids are used. Out of the 

three quadrat-based metrics, only the skewness metric is robust to the claimed specimen 

thickness with Type I error rates close to 0.05 under both ݊ଵ	and	݊ଶ for both particle-based 

and aggregate-based pattern at S=5 or 15. When S=25, the particle-based skewness metric is 

also sensitive to misspecification of h (e.g., Type I error rate is higher than 0.1 in some cases).   

Table 3. Type I error rates for quadrat-based methods. 

 

݄଴ ݄ 

݊ ൌ ݊ଵ= 423 ݊ ൌ ݊ଶ ൌ 1409 

ID S= SE S= SK S= ID S= SE S= SK S= 

5 15 25 5 15 25 5 15 25 5 15 25 5 15 25 5 15 25
P

article-based 

50 
70 .03 .02 .01 .03 .02 .01 .05 .03 .01 .01 0 0 .01 0 0 .05 .03 .01

∞ .01 0 0 .01 0 0 .04 0 0 0 0 0 0 0 0 .04 0 0 

 

60 

50 .07 .09 .12 .07 .08 .11 .05 .07 .09 .1 .21 .33 .1 .19 .3 .05 .07 .1 

70 .04 .03 .02 .04 .03 .02 .05 .05 .03 .03 .01 0 .02 .02 .01 .05 .04 .02

∞ .01 0 0 .01 0 0 .04 .01 0 0 0 0 0 0 0 .04 0 0 

70 
50 .08 .13 .2 .08 .12 .18 .05 .07 .13 .16 .43 .68 .16 .4 .62 .05 .08 .17

∞ .01 0 0 .01 0 0 .04 .01 0 0 0 0 0 0 0 .04 0 0 

A
ggregate-based 

50 
70 .04 .04 .04 .04 .02 .01 .05 .05 .03 .03 .02 .01 .02 0 0 .05 .03 .03

∞ .04 .03 .02 .02 0 0 .05 .03 .01 .01 0 0 0 0 0 .04 .01 .01

 

60 

50 .06 .06 .05 .06 .09 .12 .05 .05 .06 .06 .07 .1 .08 .16 .31 .05 .06 .07

70 .05 .05 .04 .05 .03 .02 .04 .05 .04 .04 .03 .03 .03 .02 .01 .05 .04 .04

∞ .05 .03 .02 .02 0 0 .04 .03 .01 .01 0 0 0 0 0 .04 .02 .01

70 
50 .06 .06 .06 .07 .12 .2 .06 .05 .07 .07 .1 .16 .11 .31 .63 .05 .07 .07

∞ .05 .03 .03 .02 0 0 .05 .03 .01 .02 0 0 0 0 0 .04 .02 .01
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From Table 4, it is seen that for distance-based metrics, only K function attains 

acceptable Type I error rates under both ݊ଵ and 	݊ଶ  for both particle-based and 

aggregate-based centroid patterns. The dispersion metrics based on the centroids of 

aggregates are slightly more robust than those based on the centroids of nanoparticles.  

Table 4. Type I error rates for distance-based methods. 

 
݄଴ ݄ 

݊ ൌ ݊ଵ ൌ 423 ݊ ൌ ݊ଶ ൌ 1409 
K F G K F G 

Tଵ Tଶ Tଵ Tଶ Tଵ Tଶ Tଵ Tଶ Tଵ Tଶ Tଵ Tଶ 

P
article-based 

50 
70 .04 .04 .09 .01 .24 .01 .04 .02 .96 0 .99 0 
∞ .03 .01 .77 0 0 0 .07 0 0 0 0 0 

60 
50 .06 .06 .08 .11 .14 .19 .05 .07 .6 .7 .72 .79 
70 .04 .05 .05 .03 .08 .02 .04 .03 .34 0 .4 0 
∞ .03 .02 .61 0 .99 0 .06 0 0 0 0 0 

70 
50 .07 .07 .12 .17 .27 .36 .08 .1 .97 .98 .99 0 
∞ .03 .02 .49 0 .94 0 .05 0 0 0 0 0 

A
ggregate-based 

50 
70 .04 .04 .09 .01 .09 .18 .04 .04 .88 0 .75 .85 
∞ .03 .03 .92 0 .62 .77 .01 .02 0 0 0 0 

60 
50 .06 .05 .11 .14 .05 .04 .06 .06 .46 .56 .23 0 
70 .05 .05 .04 .02 .07 .12 .05 .05 .27 0 .23 .36 
∞ .04 .04 .79 0 .48 .65 .02 .02 0 0 0 0 

70 
50 .06 .06 .18 .24 .08 .02 .07 .07 .9 .94 .61 0 
∞ .04 .04 .65 0 .38 .55 .02 .02 0 0 0 0 

From Table 5, it is seen that the number of aggregates is very sensitive to the 

assumption of specimen thickness, and thus may not be a qualified dispersion measure when 

the exact specimen thickness is unavailable. It is imaginable that if the number of aggregates 

is not robust, the area distribution of aggregates is also not robust. Thus, the dispersion 

measures based on the unreinforced domains of the polymer [24-28], which are closely 

related to the inter-aggregate distance, may be even more sensitive. 

Table 5. Type I error rates for the number of aggregates 

݄଴ 50 60 70 
݄ 60 70 ∞ 50 70 ∞ 50 60 ∞ 

n=	݊ଵ .01 0 0 .25 .01 0 .47 .18 0 
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n=	݊ଶ 0 0 0 .63 0 0 .97 .44 0 

In Tables 3~5, the results under ݄ ൌ ∞correspond to the performance of the 

dispersion metrics when a Poisson process is used, in which the actual ݄଴	ranges from 50nm 

to 70nm. The resulted Type I error rates under the Poisson process model largely deviate from 

the nominal level of 0.05. Note that sometimes Type I error rates for using the Poisson 

process is 0 from the simulation. From the perspective of controlling Type I error rates, this 

result may argue for the use of the Poisson process. However, it can be expected that in such 

cases, we have almost no power to detect clustering by using the Poisson process. So the 

simulation results echo the conclusion from Proposition 2 that a Poisson process can only be 

seen as the limit of the projected hardcore process when ݄ → ∞. Therefore, it is seriously 

untenable to use a Poisson process if the true hardcore process does not have a sufficiently 

large h, as is usually the case for real TEM micrographs.  

3.3 Detection Power Analysis  

Detection power against clustering is an important attribute for evaluating dispersion 

metrics. The ideal dispersion metric should not only be insensitive to the assumption of h, but 

also sensitive in detecting potential clustering. Further simulation studies are conducted to 

compare the detection power of the two selected robust dispersion metrics: skewness and 

K-function. Through simulations, it is possible to find out the performance of the dispersion 

metrics based on the unobservable 3D point process in ࣢ as compared with their observable 

counterparts in W. So the power analysis also partly answers the question whether the 

selected 2D dispersion metrics are capable of representing the actual 3D dispersion of 

nanocomposites. Detailed settings of this simulation are given below:  
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 w=l=1067nm; r=10.5nm; h=60nm; 

 Number of nanoparticles (n): ݊ଵሺേ10%݊ଵሻ,	݊ଶ	ሺേ10%݊ଶሻ; 

 Ratio of intensities between the interior and the exterior of the cluster (R): 2, 3, 4; 

 Duplicates of simulation under each setting: 10000. 

 Dispersion metrics: skewness and K-function (Tଵ and Tଶ) based on centroids of 3D 

particles (3p), and centroids of 2D particles (2p) or aggregates (2a) 

For the simulation, we assume that each cluster has an ellipsoidal shape in 3D. The 

center of the ellipsoid is randomly drawn from ࣢ under the constraint that the ellipsoid is 

completely within 	࣢ . The semi-axes of the ellipsoid are fixed at one fourth of each 

dimension of		࣢. The ratio of intensities R between the interior and the exterior of the 

ellipsoidal cluster is calculated as  

 
/

/
in in

ex ex

n V
R

n V
 , 

in which inn and inV denote the number of nanoparticles and the volume in the interior of the 

ellipsoidal cluster, exn and exV denote the number of nanoparticles and the volume in the 

exterior of the ellipsoidal cluster. Since inV , exV and in exn n n  are determined a prior, 

( )in exn n can be uniquely determined for each fixed R. Simulation of the clustering patterns 

can be conducted by sequentially put inn nanoparticles in the interior and exn nanoparticles 

in the exterior of the ellipsoidal cluster respectively under the hardcore constraint.    

Figure 3 presents a few simulated point patterns after projecting onto 2D (with the 2D 

projection of the ellipsoidal cluster represented by circle in Fig. 3). Since the cylinder whose 

2D projection coincides with the area enclosed by the circle encompasses regions other than 

the ellipsoid, the degree of clustering within the circle is diluted to some degree as compared 
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with that in 3D. It is seen from Fig. 3 that when R=2, it is hard to discern clustering by our 

naked eyes.  

 
Figure 3.Point patterns with clustering. 

For the skewness metric based on the centroids of 3D particles, the h dimension is 

equally divided into two parts, because the radius of the nanoparticles is not very small as 

compared with h. As a result, the total number of quadrats is k=SൈSൈ2. 

For the power analysis, it is desirable to know how to combine multiple available 

TEM micrographs to provide better detection of clustering. If the point processes generated 

from m micrographs would follow the same null hypothesis distribution, a simple combining 

rule can be generated by using some summary statistics (e.g., maximum or mean) of m 

micrographs as the test statistic. In reality, however, it is likely that micrographs taken at 

different locations of the specimen contain different number of nanoparticles even if we could 

assume the same h for different micrographs. Thus, the null hypothesis distribution of the 

dispersion metrics may vary from micrograph to micrograph when they are taken from the 

same TEM specimen at different locations. Consequently, the dispersion metrics calculated 

from multiple micrographs cannot be directly combined.  

In order to combine multiple micrographs with the consideration of different number 

of nanoparticles at different locations of a TEM specimen, we propose to standardize the 

dispersion metrics so that those micrographs within a TEM specimen would follow similar 
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null hypothesis distributions. The skewness metric can be both positive and negative and the 

shape of the distribution is roughly symmetric, so its standardization is achieved by 

subtracting the sample mean and then dividing by the sample standard deviation. Differently, 

the K-function metrics must be non-negative and the distribution is right-skewed. So its 

standardization is done by dividing its sample mean. Our simulation studies show that after 

standardization, the null distributions of dispersion metrics (skewness and K function) 

calculated from multiple micrographs of different number of nanoparticles are very similar to 

each other. Therefore, the test statistics will be constructed by combining multiple 

micrographs using the standardized metrics instead of the original metrics. Similarly, this 

standardization can also be used for comparing different samples with possibly different 

numbers of nanoparticles or specimen thickness. 

In practice, since it is hard to known a priori the number of nanoparticles in a TEM 

micrograph, we take a simplified simulation approach in the hope of elucidating the 

procedures of the power analysis based on multiple micrographs. For each content of 

nanoparticles (3% or 10%) with an expected number of nanoparticles n (=݊ଵ	or	݊ଶ), the 

number of nanoparticles in each of m (m ranges from 1 to 15) micrographs is randomly set as 

n 90%, n and n 110% with equal probabilities. Under the Poisson model, the number of 

particles in a micrograph follows a Poisson distribution with n as the expectation. The 

probability that the number of particles is within 10% of n is about 0.96 for ݊ଵ	and almost 

one for	݊ଶ. Under the hardcore process, the variability for the number of particles is even 

smaller. So a range of 10% covers the possible number of nanoparticles well under the 

hardcore process with a fixed content of nanoparticles for micrographs taken from the same 
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original specimen. Then the mean of the standardized dispersion metrics from all m 

micrographs is used as the test statistic. The results of the power analysis are summarized in 

Table 6. For skewness, only the results for S=5 are shown, since the case of S=5 has the 

largest power in all scenarios. 

It can be seen from Table 6 that for SK, the metric based on the centroids of 3D 

particles has the largest power. For K-function, both	Tଵ	and	Tଶ	are the most powerful based on 

the centroids of 2D particles. The K-function metrics are uniformly more powerful than SK 

across all ratios of intensities. Within the K-function family, the one-sided test is more 

powerful than the two-sided test. The performance of the one-sided K-function 

metric	Tଶ	based on the centroids of 2D particles is superior, which is shown by a power of 80% 

or more for different number of nanoparticles when the ratio of intensities is moderately large 

(R=3 or 4) or when multiple images can be combined (e.g., R=2, ݊ ൌ ݊ଵሺേ10%݊ଵሻ, m=5). 

Although K-function based on the centroids of 2D aggregates does not perform as well as 

K-function based on the centroids of 2D particles, its power is also quite satisfactory, only 

except for the case of	݊ ൌ ݊ଶሺേ10%݊ଶሻ. With an increased ratio of intensities or an 

increased number of combined images, all dispersion metrics become more powerful, except 

for the case of ݊ ൌ ݊ଶሺേ10%݊ଶሻ	using SK based on the centroids of 2D aggregates. This 

exception is consistent with our intuition. When a cluster consists of a large number of 

particles (e.g., under n2), more particles may belong to the same aggregate, thus resulting in 

fewer aggregates.  

To further clarify this point, the mean ratios of intensities (RoI) between the interior 

and the exterior of the circle projected from the ellipsoidal cluster for nanoparticles (Fig. 4a) 
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and for aggregates (Fig. 4b) are plotted against varying numbers of nanoparticles at different 

levels of R. The number of nanoparticles is calculated according to the expected number of 

nanoparticles with a nanoparticle content ranging from 2% to 15% under a thickness of 60nm. 

From Fig. 4a, it is seen that the RoI for nanoparticles are above one everywhere for each 

choice of R, which shows that clustering nanoparticles in 3D can always be translated into 

clustering nanoparticles in the projected 2D micrographs. So dispersion metrics based on the 

centroids of 2D nanoparticles work well in distinguishing clustering patterns from a null 

hypothesis of hardcore process. The curves for nanoparticles from different R do not cross 

and the curve with the larger R is always above, so the power of 2D particle-based dispersion 

metrics improves with increasing R. In contrast, from Fig. 4b, the RoI for aggregates can be 

below one when nanoparticle content is large (e.g., 12% or more). In addition, the curves for 

different R cross at around a content of 10%, so increasing R does not necessarily signify 

more severe clustering of aggregates in 2D. At a content of 10% nanoparticles, the 

corresponding RoIs for all levels of R are close to one, which shows no substantial difference 

of the RoI for aggregates among the null hypothesis hardcore process and the three clustering 

cases with different R levels. This explains why the skewness metric based on the centroids 

of 2D aggregates at ݊ ൌ ݊ଶሺേ10%݊ଶሻ only attains a power around the nominal Type I error 

rate of 0.05 at all levels of R.  
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Figure 4.a. Mean RoI for nanoparticles. b. Mean RoI for aggregates. c. Difference between 
the K-function curve and its reference curve under the hardcore process at a content of 10% 
and 13% when R=2.  

For K-function, the same effect also applies when	݊ ൌ ݊ଶሺേ10%݊ଶሻ, but not as 

severe. The K-function curve still has a small positive distance from the null hypothesis curve 

(the difference of the two curves at a content of 10% is shown in solid in Fig. 4c), so the 

power can be enhanced by combining multiple images. In fact, our simulation studies 

indicate that the power of the one-sided K-function metric based on centroids of 2D 

aggregates can reach 80% when the ratio of intensities is relatively large (e.g., R=3 or 4) 

and/or when a large number of micrographs can be combined (e.g., m>10). For a content of 

12% or more, the K-function curve may lie mostly below the null hypothesis curve (the 

difference of two curves at a content of 13% is shown in dash in Fig. 4c). In this case, the 

one-sided test statistics	Tଶ	may lose power. Instead, the two-sided statistics	Tଵ	may be a more 

reasonable choice. Aside from assuming a single ellipsoidal cluster as the clustering pattern, 

multiple ellipsoidal clusters have also been considered. The conclusions are similar to the 

single cluster case, so results are omitted here. 

Table 6. Power of the skewness and the K function metrics. 

R m 

݊ଵሺേ10%݊ଵሻ ݊ଶሺേ10%݊ଶሻ 
SK Tଵ Tଶ SK Tଵ Tଶ 

3p 2p 2a 3p 2p 2a 3p 2p 2a 3p 2p 2a 3p 2p 2a 3p 2p 2a 
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2 

1 .14 .09 .08 .2 .32 .26 .34 .4 .33 .51 .23 .05 .58 .74 .1 .69 .83 .14 

5 .33 .17 .13 .46 .72 .59 .79 .85 .74 .95 .68 .05 .97 1 .15 .99 1 .27 

10 .5 .27 .17 .69 .92 .82 .96 .98 .94 1 .9 .05 1 1 .2 1 1 .43 

15 .65 .35 .21 .82 .97 .91 .99 1 .99 1 .97 .05 1 1 .25 1 1 .55 

3 

1 .59 .33 .25 .5 .9 .8 .63 .94 .85 .94 .89 .06 .86 1 .16 .9 1 .22 

3 .91 .69 .5 .82 1 .99 .92 1 .99 1 1 .05 .99 1 .25 1 1 .36 

5 .98 .88 .68 .94 1 1 .98 1 1 1 1 .05 1 1 .33 1 1 .48 

4 

1 .86 .68 .51 .65 1 .99 .75 1 1 1 1 .05 .93 1 .17 .95 1 .23 

2 .98 .93 .78 .86 1 1 .93 1 1 1 1 .04 .99 1 .24 1 1 .32 

3 1 .99 .91 .95 1 1 .98 1 1 1 1 .04 1 1 .29 1 1 .39 

3.4 Summary of Analysis Procedures 

The proposed analysis procedures for detecting possible clustering in TEM micrographs can 

be summarized in a flowchart as shown in Fig. 5. First, image processing techniques are used 

to find the number of nanoparticles and the location of the centroids of nanoparticles or 

aggregates on the micrograph, which will be discussed in Section 4. This information, 

combined with source information such as w, l, r and a claimed h determines the null 

hypothesis based on the projected hardcore process. Second, if h is not accurately known, the 

robust dispersion metrics should be selected. Third, the number of available images 

determines whether to standardize and combine dispersion metrics from multiple images. 

Fourth, the dispersion metrics from the real images and their distributions under the null 

hypothesis of a projected hardcore process are calculated. Finally, a formal statistical 

hypothesis test can be conducted by comparing the observed test statistic with its distribution 

under the null hypothesis.  
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Figure 5. Flowchart for the proposed analysis procedures. 

4 Case Study 

4.1 Materials and TEM preparation 

In this paper, we evaluate the dispersion level of sol-gel-formed silica nanoparticles in 

bisphenol-F epoxy resin, a polymer nanocomposite that has superior wear-resistant and 

mechanical properties. Nanocomposite specimen with silica contents at 3% and 10% are cut 

and prepared into ultra-thin specimens using ultramicrotome. Then silica dispersion is 

examined by TEM (FEI Tecnai G2 F20 UT) under a magnification factor of 19000 times (i.e., 

w=l=1067nm). At the content of 3%, one micrograph is taken and the thickness of the 

specimen is around 60nm. At the content of 10%, three micrographs are taken and the 

specimen thickness is around 50nm. The average diameter of the nanoparticles is known to 

be 21nm, which is used as the constant diameter of nanoparticles for the analysis. Figure 6 

shows the TEM micrographs under investigation. There are 1024ൈ1024 pixels on each 

micrograph and each pixel has a grayscale of 0 (black) to 255 (white).    
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Figure 6.Real TEM micrographs and aggregate boundary detection. 

4.2 Image processing 

TEM micrographs are digital images that do not provide direct quantitative information. Thus, 

image processing techniques have to be first applied. Image analysis of TEM micrographs 

has been studied for metallic nanoparticles [36-39] whose contrast with the polymer 

background is relatively sharp or for images with no systematic bias on any particular region 

[40]. However, the observed TEM micrographs have relatively low contrast between the 

silica nanoparticles and the epoxy background and the bottom right corner of some 

micrographs is systematically darker than the rest of the regions (see Fig. 6b, 6c, 6d). As a 

result, a specially designed image processing algorithm is used to binarize the micrograph 

into white (background) and black (nanoparticle), which we call the “adaptive Gaussian 

mixture (AGM) algorithm” [41]. The AGM algorithm finds the number of and the positions 

of the centroids of aggregates in a TEM micrograph. Furthermore, aggregate-based dispersion 

metrics are relatively more robust when exact information of the specimen thickness is not 
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available. Therefore we only use aggregate-based dispersion metrics to illustrate the 

implementation of the proposed procedures. Aside from aggregate information, the number of 

nanoparticles also has to be obtained from image processing to simulate the projected 

hardcore process. To this end, the iterative voting method (IVM) [42] is used.  

4.3 Results 

Following the procedures in Fig. 5, four micrographs are analyzed. Table 8 provides some 

basic information as well as the p-values obtained from the hypothesis tests for detecting 

clustering using the skewness metric and the K-function metrics.  

Table 8. Analysis results of four micrographs. 

Micrograph # of nanoparticles # of aggregates 
p-value 

SK Tଵ Tଶ 
1 454 286 0.31 0.004 0.002 
2 1181 508 0.95 0 0.97 
3 1145 555 0.96 0.02 0.98 
4 1050 566 0.27 0.03 0.96 

p-value from combined test statistics 0.95 2E-4 1 

For micrograph 1, the skewness metric cannot detect significant clustering, but both 

K-function metrics declare a highly significant difference from the null hypothesis. For 

micrograph 2, 3 and 4, only the two-sided K-function metric suggests a difference from the 

null hypothesis. But this phenomenon may happen either when the 3D point process is more 

regular than a hardcore process or when the clustering of nanoparticles generates fewer 

aggregates. A closer look at those three micrographs suggests evidence of clustering. First, 

the number of aggregates in those micrographs is far below the reasonable range. For 

example, the 5th percentile of the number of aggregates for a Poisson process with 1145 

nanoparticles is 518. This number should be larger for a hardcore process with a limited h. 



Quantifying Dispersion of Nanoparticles in Polymer Nanocomposites Through TEM Micrographs 
 

01/20/2014,  Li,  30 
 

However, micrograph 2 has only 508 aggregates with more than 1145 nanoparticles. So, there 

is evidence that clustering results in fewer aggregates. Second, the point process generated 

from the centroids of nanoparticles using the IVM method [42], though subject to more errors 

in image processing, also indicates statistical significance in testing clustering using the 

one-sided K-function metric when combining three micrographs (p=0.03). The results of the 

analysis show that a random dispersion of nanoparticles is not achieved within the polymer 

matrix. Whether and how the clustering of nanoparticles affects the properties of the 

nanocomposites is a question to be investigated in future. 

5 Conclusions  

In this paper, we propose to use the projection of a 3D hardcore process instead of the 

Poisson process to model the 3D random distribution of hard nanoparticles in polymer 

nanocomposites shown on a TEM micrograph. The thickness of the thin specimen h under 

imaging is identified as an important factor to influence how different a hardcore process and 

a Poisson process are. Since it is generally hard in practice to accurately measure thickness, 

the impact of a misspecification of h is investigated through simulations, based on which 

robust dispersion metrics using skewness of quadrat counts and the squared deviation of the 

K-function curves are recommended. Further power analysis of these dispersion metrics show 

that the K-function related metrics have relatively better power to detect clustering, especially 

when multiple micrographs are available to be combined in the analysis.  

The proposed hardcore model is under the assumption of a constant size for 

nanoparticles. This model is a more realistic simplification and approximation for 

nanoparticle dispersion in 3D than the existing methods using the Poisson process. It is now 
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well known that a uniform particle size is a key to enhance novel properties and high 

performance of nanoparticles [43]. Especially, monodisperse nanoparticles with a size 

variation of less than 5% show unique properties and better performance as compared with 

the corresponding polydisperse nanoparticles [43]. Nowadays, with the advancement of 

nanotechnology, it is not uncommon to synthesize nanoparticle with its size’s standard 

deviation less than 10% [44]. We conducted more simulations with nanoparticle radius 

following a normal distribution with mean r and standard deviation r equal to 0.1r. The 

simulation results with the radius distribution of N(10.5,0.105) indicate that the Type I errors 

are close to the nominal level of 0.05 under the assumption of a constant nanoparticle radius 

equal to 10.5nm. Therefore, in practical situations with a small random variation of 

nanoparticle size (r ≤0.1r), our analysis based on the assumption of a constant nanoparticle 

size can still provide reliable inferences. For cases in which nanoparticles may have a wide 

range of sizes, a marked point process with each nanoparticle marked with its radius may 

deserve further investigation.  

A quantitative index for nanoparticle dispersion is essentially needed to build a 

quantitative relationship between dispersion and process parameters or between dispersion 

and nanocomposite properties. The former facilitates optimization of the process parameters, 

and the latter provides rational choice of the index as a reliable surrogate for destructive 

property testing. Establishment of these relationships completes the loop of dispersion 

analysis and is the next thing we shall pursue.  
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Appendix. 
Proof of Proposition 2.1. 

Let ሼ࢏࢞, ݅ ൌ 1,… , ݊ሽ denote random variables that are uniformly distributed in ࣢,	let 

d=2r be the diameter of the nanoparticles and let	ܣ௜௝ ൌ ሼฮ࢏࢞ െ ฮ࢐࢞ ൑ ݀, ,࢏࢞ ࢐࢞ ∈ ࣢, 1 ൑ ݅, ݆ ൑

݊ሽ, then it is easy to see that 

ߙ ൌ 1 െ ܲቌራܣ௜௝
௜ஷ௝

ቍ. 

From the Bonferroni inequality,  

෍Pሺܣ௜௝ሻ െ ෍ P൫ܣ௜௝ ∩ ௞௟൯ܣ
ሺ௜,௝ሻஷሺ௞.௟ሻ௜ஷ௝

൅ ෍ P൫ܣ௜௝ ∩ ௞௟ܣ ∩ ௣௤൯ܣ
ሺ௜,௝ሻஷሺ௞.௟ሻஷሺ௣,௤ሻ

൒ 1 െ ߙ

൒෍Pሺܣ௜௝ሻ െ ෍ P൫ܣ௜௝ ∩ ሺ1ሻ		௞௟൯.ܣ
ሺ௜,௝ሻஷሺ௞.௟ሻ௜ஷ௝

 

So the proof reduces to the calculation of each of the probabilities in (1). The techniques for 

deriving inequalities for each of the probabilities in (1) are similar, so we only use P൫ܣ௜௝൯ as 

an example.  
Assume that ࣢	is partitioned into three sub-regions: R1, R2, and R3 (shown in Fig. 

7). R1 is the innermost region enclosed by dashed lines. For any point x in R1, a sphere with 
x as the center and a radius of d does not intersect with the boundary of	࣢. The sub-region 
R2 is made up of six cuboids, one side for each of which is within one of the six sides of	࣢. 
For any point x in R2, a sphere with x as the center and a radius of d only intersects one side 
of	࣢. The rest of the regions comprise R3, which includes the eight corner cubes and the 
twelve cuboids, one edge of which is within one of the twelve edges of	࣢. For any point x in 
R3, a sphere with x as the center and a radius of d intersects two or three sides of	࣢. 

 

Figure 7. Partition of	࣢. 
Let	 ଵܸ, ଶܸ and ଷܸ denote the volume of R1, R2 and R3, where ଵܸ ൌ ሺ݈ െ 2݀ሻ 

ሺݓ െ 2݀ሻሺ݄ െ 2݀ሻ, ଶܸ ൌ 2݀ሼሺݓ െ 2݀ሻሺ݈ െ 2݀ሻ ൅ ሺݓ െ 2݀ሻሺ݄ െ 2݀ሻ ൅ ሺ݈ െ 2݀ሻሺ݄ െ 2݀ሻሽ, 

ଷܸ ൌ 8݀ଷ ൅ 4ሺݓ െ 2݀ሻ݀ଶ ൅ 4ሺ݈ െ 2݀ሻ݀ଶ ൅ 4ሺ݄ െ 2݀ሻ݀ଶ.  P൫ܣ௜௝൯	can be decomposed into 

three parts, depending on where ࢏࢞ is. It is easy to see that	P൫࢏࢞ ∈ ܴଵ, ฮ࢏࢞ െ ฮ࢐࢞ ൑ ݀൯ ൌ
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௏భ
௪௟௛

ସగௗయ ଷ⁄

௪௟௛
ൌ ܽଵ and	0 ൑ P൫࢏࢞ ∈ ܴଷ, ฮ࢏࢞ െ ฮ࢐࢞ ൑ ݀൯ ൑ ௏య

௪௟௛

ସగௗయ ଷ⁄

௪௟௛
ൌ ܿଵ. The case in which a 

point is in	ܴଶଵ ൌ ሾ݀, ݓ െ ݀ሿ ൈ ሾ݀, ݈ െ ݀ሿ ൈ ሾ0, ݀ሿ, a subset of ܴଶ can be derived from the 
following integral: 

P൫࢏࢞ ∈ ܴଶଵ, ฮ࢏࢞ െ ฮ࢐࢞ ൑ ݀൯ ൌ ම d࢏࢞ ම d࢐࢞
ฮ࢐࢞ି࢏࢞ฮஸௗ࢏࢞∈ோమభ

ሺ݄݈ݓሻଶ൘  

ൌ ඵ dݔ௜ଵdݔ௜ଶ
ௗஸ௫೔భஸ௪ିௗ
ௗஸ௫೔మஸ௟ିௗ

න ሺ݀ߨଶݔ௜ଷ െ
௜ଷݔߨ

ଷ

3
൅ ௜ଷݔଷ/3ሻd݀ߨ2

଴ஸ௫೔యஸௗ

ሺ݄݈ݓሻଶ൘  

ൌ ݀ሺݓ െ 2݀ሻሺ݈ െ 2݀ሻሺ
ଷ݀ߨ13

12
ሻ ሺ݄݈ݓሻଶൗ . 

Summing up all sub-regions of	ܴଶ gives that	P൫࢏࢞ ∈ ܴଶ, ฮ࢏࢞ െ ฮ࢐࢞ ൑ ݀൯ ൌ

௏మ
௪௟௛

ଵଷగௗయ ଵଶ⁄

௪௟௛
ൌ ܾଵ. So	݈ଵ

గௗయ

௪௟௛
ൌ ܽଵ ൅ ܾଵ ൑ P൫ܣ௜௝൯ ൌ ∑ P൫࢏࢞ ∈ ܴ௦, ฮ࢏࢞ െ ฮ࢐࢞ ൑ ݀൯ ൑ଷ

௦ୀଵ ܽଵ ൅

ܾଵ ൅ ܿଵ ൌ ଵݑ
గௗయ

௪௟௛
. Similarly, it can be shown that ݈ଶሺ

గௗయ

௪௟௛
ሻଶ ൌ ܽଶ ൅ ܾଶ ൑ P൫ܣ௜௝ ∩ ௜௞൯ܣ ൑

ܽଶ ൅ ܾଶ ൅ ܿଶ ൌ ଶሺݑ
గௗయ

௪௟௛
ሻଶ, ݈ଷሺ

గௗయ

௪௟௛
ሻଷ ൌ ܽଷ ൅ ܾଷ ൑ P൫ܣ௜௝ ∩ ௜௞ܣ ∩ ௜௤൯ܣ ൑ ܽଷ ൅ ܾଷ ൅ ܿଷ ൌ

ଷሺݑ
గௗయ

௪௟௛
ሻଷ and	P൫ܣ௜௝ ∩ ௜௞ܣ ∩ ௣௝൯ܣ ൑

൫ସగௗయ ଷ⁄ ൯
మ

ሺ௪௟௛ሻమ
P൫ܣ௜௝൯, where ܽଶ ൌ

௏భ
௪௟௛

ቀ
ସగௗయ ଷ⁄

௪௟௛
ቁ
ଶ
, ܾଶ ൌ 

	 ௏మ
௪௟௛

ଷ଼ଷሺగௗయሻమ ଷଵହ⁄

ሺ௪௟௛ሻమ
, ܿଶ ൌ

௏య
௪௟௛

ቀ
ସగௗయ ଷ⁄

௪௟௛
ቁ
ଶ
, ܽଷ ൌ

௏భ
௪௟௛

ቀ
ସగௗయ ଷ⁄

௪௟௛
ቁ
ଷ
, ܾଷ ൌ

௏మ
௪௟௛

ଵ଴଺ଶଵ൫గௗయ൯
య
଻ହ଺଴ൗ

ሺ௪௟௛ሻయ
	and 

ܿଷ ൌ
௏య
௪௟௛

ቀ
ସగௗయ ଷ⁄

௪௟௛
ቁ
ଷ
. From combinatorics theory, it can be shown that ∑ P൫A୧୨൯୧ஷ୨ ൌ

݃ଵሺ݊ሻPሺܣଵଶሻ, ∑ P൫ܣ௜௝ ∩ ௞௟൯ܣ ൌ ݃ଶଵሺ݊ሻPଶሺ௜,௝ሻஷሺ௞.௟ሻ ሺܣଵଶሻ ൅ ݃ଶଶሺ݊ሻPሺܣଵଶ ∩  	,ଵଷሻܣ

∑ Pሺܣ௜௝ ∩ ௞௟ܣ ∩ ௣௤ሻሺ௜,௝ሻஷሺ௞,௟ሻஷሺ௣,௤ሻܣ ൌ ݃ଷଵሺ݊ሻPଷሺܣଵଶሻ ൅ ݃ଷଶሺ݊ሻPሺܣଵଶሻܲሺܣଵଶ ∩ ଵଷሻܣ ൅  

݃ଷଷሺ݊ሻPሺܣଵଶ ∩ ଵଷܣ ∩ ଵସሻܣ ൅ ݃ଷସሺ݊ሻPሺܣଵଶ ∩ ଵଷܣ ∩ ଶସሻܣ ൅ ݃ଷହሺ݊ሻ	Pሺܣଵଶ ∩ ଵଷܣ ∩  ,ଶଷሻܣ

where	 ଵ݃ሺ݊ሻ ൌ ൫௡ଶ൯, ݃ଶଵሺ݊ሻ ൌ
൫೙మ൯൫

೙షమ
మ ൯

ଶ
, ݃ଶଶሺ݊ሻ ൌ ൫௡ଶ൯ሺ݊ െ 2ሻ, ݃ଷଵሺ݊ሻ ൌ ൫௡ଶ൯൫

௡ିଶ
ଶ ൯൫௡ିସଶ ൯ 3!⁄ ,  

	݃ଷଶሺ݊ሻ ൌ ൫௡ଵ൯൫
௡ିଵ
ଶ ൯൫௡ିଷଶ ൯, ݃ଷଷሺ݊ሻ ൌ ൫௡ଵ൯൫

௡ିଵ
ଷ ൯, ݃ଷସሺ݊ሻ ൌ 2൫௡ଶ൯൫

௡ିଶ
ଶ ൯	and	݃ଷହሺ݊ሻ ൌ ൫௡ଷ൯. 

Summarizing all results,	ݏଵሺ݊ሻ ൌ 8 ଵ݃ሺ݊ሻ݈ଵ, ଶሺ݊ሻݏ ൌ 64ሺ݃ଶଵሺ݊ሻݑଵ
ଶ ൅ ݃ଶଶሺ݊ሻݑଶሻ, ଵሺ݊ሻݐ ൌ

8݃ଵሺ݊ሻݑଵ	, ଶሺnሻݐ ൌ 64ሺ݃ଶଵሺ݊ሻ݈ଵ
ଶ ൅ ݃ଶଶሺ݊ሻ݈ଶ െ ݃ଷହሺ݊ሻݑଶሻ, and	ݐଷሺ݊ሻ ൌ 

512ሺ݃ଷଵሺ݊ሻݑଵ
ଷ ൅ ݃ଷଶሺ݊ሻݑଵݑଶ ൅ ݃ଷଷሺ݊ሻݑଷ ൅ 16݃ଷସሺ݊ሻݑଵ/9ሻ. 
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