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Modeling human decision making behavior is of great interest in understanding how a
decision maker weights different decision attributes when making a decision. Such knowl-
edge is critically important in helping predict future decisions, evaluating human decision
performance, and improving the design of human and machine interface systems. Decision
field theory (DFT) provides a psychological representation of the cognitive deliberation
process, which is driven by the fluctuations of a person’s attention among decision attri-
butes. In this research area, the most common use of a DFT model is to estimate or predict
the human decisions by using a set of pre-specified expected attention weights (EAWs) in
the DFT model. Unlike other research, this paper extends the capabilities of DFT in a com-
plementary direction, showing how to fit or train a DFT model by estimating the EAW
based on sequentially obtained samples of decision trials. Furthermore, the inherent con-
nection between the EAW and the decision choice uncertainty is investigated. The pro-
posed modeling method is discussed in detail for a two-alternative decision scenario
based on two attributes. Both simulations and a case study are conducted in the paper
to demonstrate the effectiveness of the proposed modeling approach.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

There is an increasing research interest in understanding human decision making behavior, evaluating human decision
making performance, and assisting human beings in making decisions. Accurate modeling of human decision making behav-
ior will improve the prediction of future decisions, provide increasingly effective designs of human–machine interfaces, and
guide the training of expert systems, and so on. As a fundamental requirement, an effective decision making model should be
able to adequately represent the decision maker’s historical decision behavior and reliably predict future decisions.

The research of decision making modeling is of a multidisciplinary nature and has been investigated in many different
contexts. Townsend and Busemeyer [20] introduced a dynamic decision making model called decision field theory (DFT).
Decision field theory belongs to a large class of models called sequential sampling models; information about these models
is found in [14,16,21]. Because of the dynamic nature of the model, DFT has been successfully used to model various dynamic
decision making scenarios, including an operator’s reliance on automation in [8,9], dynamic route guidance in [19], and a
broker’s behavior in a virtual stock market in [13]. Recently, a comprehensive study was conducted in [12] to compare
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the DFT model with another cognitive preferential choice model called the proportional difference (PD) model [11], in terms
of the ability to predict people’s decisions in nondominated gambling scenarios. The study showed that the DFT models were
more accurate in predicting people’s decisions than the PD models under the investigated scenario.

The DFT model provides a useful framework for modeling human decision behavior, particularly considering the dynamic
and sequential aspects of decision making under conditions of uncertainty or risk. A key parameter affecting the model’s per-
formance and its ability to accurately predict decisions, is the estimated expected attention weight (EAW), which reflects the
degree of attentions allocated to each attribute considered in the course of decision-making [18]. Due to the random nature
of the attention weights, the DFT model is inherently a probabilistic model describing the choice preferences of a decision
maker [17]. Which can provide different decision probabilities for each alternative. In this way, DFT model differentiates
from the classical weighted utility models [2] in that the (attention) weights in DFT are stochastic, thus considering these
weights in terms of their expected value is necessary.

In most of the literature, the EAW is pre-specified and the resulting model is used to predict the future decision-making
behavior of a given subject. Unlike other research, this paper extends the capabilities of DFT in a complementary direction,
showing how to fit or train a DFT model by estimating the EAW on the basis of an individual’s ongoing decision behavior in
the task. In this way, the proposed method can be considered as a way to adaptively characterize a subject’s decision-making
behavior based on his/her sequential decisions. Furthermore, the proposed method can also be used as a way to adaptively
predict the subject’s future decisions by utilizing the adaptively estimated EAW.

Generally, the fitting and training of a DFT model is achieved through a high dimensional search of the optimal model
parameters, aimed to minimize the sum of the squared deviations between real values and predicted values. For example,
in [5], the search was done over the squared deviations of the response time (time to arrive to a decision) for estimating
seven model parameters. In [6], the model parameters were obtained by minimizing the deviations between the choice prob-
abilities and the predicted ones. In [3,4], the same estimation approach is employed, using the FMINSEARCH routine of MAT-
LAB. Differently from those existing approaches, this paper is to develop a new adaptive estimation method for estimating
the EAW parameter based on sequential decision trials. With the adaptive estimation capability, the proposed method can
efficiently capture a change of the subject’s attention weights along his/her sequential decisions, which can further improve
the DFT model performance in predicting the subject’s future decisions.

The rest of the paper is structured as follows: Section 2 introduces the concepts of macro and micro-decision processes
together with a brief review of the DFT model. Section 3 provides the proposed modeling framework in which a new rep-
resentation of the attribute measures (DM plane) along with the basic estimation principles are presented for a decision sce-
nario with two alternatives based on two attributes. Section 4 discusses the details of our DFT modeling approach, where an
adaptive estimation of the EAW is developed based on the sequentially obtained attribute measurements and decision trials.
In Section 5, two simulations are conducted to illustrate the procedures of the sequential estimation algorithm and demon-
strate its adaptive capability under the change of the EAW. In addition to the simulations, a real case study involving a hu-
man in the loop experiment is also conducted to validate the effectiveness of the proposed method. Conclusions are given in
Section 6. Finally, future research directions are provided in Section 7.
2. Definition of time scales and review of DFT

2.1. Definition of time scales

Before discussing the detail of the proposed estimation method, we first need to introduce the two time scales to be used
in the modeling. The symbol D is used to denote the sampling time interval of attribute measures, during which a decision
has to be made before the next sampling of attribute measures. Therefore, the EAW is used to describe the average effect of a
stochastic attention weight during decision interval D, in which a decision maker generates the competitive preference (va-
lence) on different alternatives [18]. In this work, we assume that the EAW can either be the same or different for different
decisions.

Based on the DFT modeling mechanism, each decision interval D may include multiple steps of deliberations with a short-
er interval d (D > d). As shown in Fig. 1, the deliberation step j = 0, 1, 2, . . ., ND forms a micro-process within each decision
interval D, with ND ¼ bD=dc denoting the maximum deliberation step for each decision. Therefore, ti,j = i � D + k � d is a general
representation of any moment for decision i at deliberation step j. For simplifying the notation, we will refer to ti,0 by ti when
it clearly represents each sampling time for obtaining attribute measurements at ti,0. In addition, it is assumed that
ti;ND � tiþ1. As shown in Fig. 1, attribute measurements are updated at each sampling time ti (i = 1, 2, . . .), which requires
the decision maker to provide the corresponding decision within the sampling interval that equals the decision interval D.
In contrast to the micro-deliberation process with the smaller deliberation interval d, ti forms a macro-process with the
sampling interval D.
2.2. Review of DFT model

Before we discuss the development of the EAW estimation method, a brief review of the DFT model and the associated
notations used in this paper will be given in this subsection. In DFT models [1], the cumulative preference vector corresponding



Fig. 1. Two different time scales for the micro and macro-processes.
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to n alternatives at time ti,j is denoted as Pðti;jÞ ¼ ½p1ðti;jÞ . . . prðti;jÞ . . . pnðti;jÞ�T . There are two common rules for arriving to a
decision in DFT. One rule is to choose alternative r at decision time ti;ND if prðti;ND Þ is greater than all other elements pkðti;ND Þ for
k – r. The other rule is to choose alternative r when pr(ti,j) is the first element exceeding a pre-specified preference threshold.
When using this rule, the decision time may be different at different trials. In this paper, the former decision rule will be used
under the fix decision time.

In DFT [1], the accumulated preference vector can be iteratively obtained as:
Pðti;jþ1Þ ¼ S � Pðti;jÞ þ Vðti;jþ1Þ ð1Þ
where S is an n � n matrix called the feedback matrix. In this paper, S ¼ f 0
0 f

� �
with |f| < 1. is used without considering the

interactive feedback between two alternatives. Vðti;jÞ ¼ ½v1ðti;jÞ v2ðti;jÞ � � � vnðti;jÞ�T is called valence column vector, and is

formed by:
Vðti;jÞ ¼ C �MðtiÞ �Wðti;jÞ: ð2Þ
C is called the contrast matrix. It is an n � n matrix used to compare all the alternatives between each other, and its elements
are subjected to

P
"qckq = 0 and ckk = 1, with the following form:
C ¼

1 �1=ðn� 1Þ � � � �1=ðn� 1Þ
�1=ðn� 1Þ 1 � � � �1=ðn� 1Þ

..

. ..
. . .

. ..
.

�1=ðn� 1Þ �1=ðn� 1Þ � � � 1

2
66664

3
77775 ð3Þ
M(ti) is called the attribute matrix, and is an n � s matrix. At the ith decision, we will use the same M(ti) matrix for all the
deliberation steps j = 0, 1, . . ., ND, i.e., M(ti,j) = M(ti,j0) = M(ti). If each alternative has s attributes, the element mrl(ti) of M(ti) cor-
responds to the measure of attribute l (l = 1, . . .,s) of alternative r (r = 1, . . . ,n) obtained at time ti and belonging to the ith
macro-decision.

The column vector Wðti;j 2 RsÞ in (2) is called the attention weight vector. Each element of this vector is assumed to be
independent Bernoulli random variables, i.e., wlðti;jÞ � Bernoulli ðqlðtiÞÞ, with ql(ti) = Ej[wl(ti,j)]. It represents the amount of
attention weight given to the lth attribute at time ti,j. Note that the vector formed by ql(ti) for (l = 1, . . .,s) is called the
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EAW vector. This paper focuses on how to adaptively estimate ql(ti) based on sequentially obtained attribute measures and
human decisions.

3. Overview of modeling framework and estimation principles

3.1. Overview of modeling framework

The main purpose of this paper is to fit a DFT model by adaptively estimating the EAW parameter. In this way we can
describe a decision maker’s behavior under sequential decision trials. Different from most of existing literature, this paper
will extend the DFT model by considering a possible change of EAW when a decision maker faces different states of attribute
measures at different times. Fig. 2 shows how this adaptive estimation approach is performed. For different samples of attri-
bute measures, EAW is adaptively adjusted at the macro-process of time ti to fit a DFT model that can predict the human
decisions with the optimal matches of actual human’s sequential decisions. Because DFT employs the stochastic human
attention weights at each deliberation time within a micro-process, it leads to a stochastic change of cumulative human pref-
erences on different alternatives. Therefore, DFT can provide a quantitative justification of human decision uncertainty based
on the probability of how the preference/confidence of the selected choice is competitive to that of other choices. In this way,
DFT can provide a probabilistic risk assessment for all the possible choices. The detail of the estimation method will be dis-
cussed in Section 4.

3.2. Description of exemplary scenario and representation of probabilistic decisions

In this section we will illustrate the effect of EAW on the probability of human choices on two alternatives based on two
attribute measures. Suppose we want to buy a car and there are two available car models to be chosen, based on two attri-
butes: economy and quality. In this paper, the attribute matrix M is represented by continuous values with a standardized
scale of [0,1]. For example, the attribute matrix at time ti,0 may be:
ð4Þ
Fig. 3(a) shows two car models (alternatives) in the two dimensional attributes plane. In this scenario, it can be shown
that the attribute differences between the two alternatives become a critical decision factor in DFT. These two attribute dif-
ferences are given by:
Dm1 ¼ m11 �m21 ¼ Economy of Car A� Economy of Car B

Dm2 ¼ m12 �m22 ¼ Quality of Car A� Quality of Car B
In this paper the DM plane shown in Fig. 3(b), is proposed to better represent the attribute differences between two
choices, where Dm1 and Dm2 are used as the horizontal axis and vertical axis, respectively. As a result, all decisions (points)
in the DM plane can be clearly divided into two regions: one is called trivial decision region, with no uncertainty, and the
other is called probabilistic decision region, with uncertainty. The following Axiom 1 describes how to make such a division.

Axiom 1. For a two-alternative decision scenario based on two attributes, the trivial decision region includes the first and
third quadrants in the DM plane as shown in Fig. 3(b). Since Dm1 > 0 and Dm2 > 0 in quadrant 1 (Dm1 < 0 and Dm2 < 0 in
quadrant 3), alternative A (alternative B) must be selected by any rational decision maker. In contrast, the probabilistic
decision region covers the attributes in quadrants 2 and 4 in the DM plane, where the decision between two alternatives is
made with a positive probability depending on the human attention weights over the two attributes.
Fig. 2. Integrated framework for adaptive estimation of the EAW in DFT.



Fig. 3. Representation of attribute measures and division of decision regions.
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Axiom 1 is easily explained in the above example of buying car A or car B. As shown in Fig. 3(b), if (Dm1, Dm2) falls in
quadrant 1 (quadrant 3), car A (car B) dominates car B (car A) in both quality and economy attributes, thus a decision is
trivially determined. On the other hand, if (Dm1, Dm2) falls in quadrant 2 (quadrant 4), car A dominates car B in quality
(economy), while car B dominates car A in economy (quality). Consequently, the selection between car A and car B in the
probabilistic decision region is determined by the person’s attention weight allocation between quality and economy. If a
random attention weight is considered in the human deliberation process, a probabilistic decision is generated, which is
modeled by DFT in this paper.

To fit a DFT model for a decision maker in the probabilistic decision region, the EAW vector q(ti) = [q1(ti) � � � ql(ti) � � � qs(ti)]T,
which characterizes the Bernoulli random variables of human attentions given to each attribute at time ti,j, is a key set of param-
eters to be estimated. Therefore, given (Dm1, Dm2) in quadrants 2 and 4, the probability of choosing A, denoted as Prob{Choosing
A}, is used to characterize the probabilistic uncertainty of decision A, which is calculated in the next subsection.

3.3. Calculation of choice probability

In order to obtain Prob{Choosing A}, based on (1), the distribution of stochastic preference is obtained iteratively by using
a diffusion process approximation of DFT as:
Pðti;ND Þ ¼
X

06j6ND�1

SjVðti;n�jÞ þ SND Pðti;0Þ ð5Þ
The vector Pðti;ND Þ is a weighted sum of previous random valence vectors. As shown in (2), each of these valence vectors
has the attention weight W(ti,j) as one of its elements. Furthermore, each of the attention weight vectors follows a multivar-
iate Bernoulli ðqðtiÞÞ distribution. It is reasonably assumed that these random vectors are independent of each other. As a
result, the distribution of Pðti;ND Þ converges into a multivariate normal distribution, i.e., Pðti;ND Þ � Normalnðnðti;ND Þ;Uðti;ND ÞÞ,
with the following mean and variance:
nðti;ND Þ ¼ nAðti;ND Þ nBðti;ND Þ½ �T ¼ E½Pðti;NDÞ� ¼ ½ðI � SÞ�1ðI � SNDÞ � C �MðtiÞ�qðtiÞ þ SND Pðti;0Þ ð6Þ

Uðti;ND Þ ¼ COV ½Pðti;NDÞ� ¼ Ef½Pðti;NDÞ � nðti;ND Þ�½Pðti;ND Þ � nðti;ND Þ�
Tg ¼

X
06j6ND�1

SjðCMðtiÞCOV ½Wðti;NDÞ�MðtiÞT CTÞðSjÞ
T

ð7Þ
In the two-alternative scenario, Prob{Choosing A} using DFT is equivalent to the probability of the preference of alternative
A being higher than the preference of alternative B at the decision time ti;ND . Therefore, Prob{Choosing A} is calculated by inte-
grating the normal density function over xA > 0 with xA ¼ pAðti;ND Þ � pBðti;ND Þ, i.e.,
ProbfChoosing Ag ¼
Z

xA>0
exp½�ðxA � dAÞ2=2kA�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pkAÞ

p
dxA ð8Þ
where dA ¼ nAðti;ND Þ � nBðti;ND Þ, kA ¼ u11ðti;ND Þ þu22ðti;ND Þ � 2u12ðti;ND Þ, and uij is the element in the ith row and jth column of
the covariance matrix U in (7).
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4. Estimation of EAW to fit a DFT model for a given decision maker

4.1. Relationship between decision boundary and EAW

Decision boundary (DB) is defined as the set of all DM plane points in the DM plane where alternative A and alternative B
have an equal probability of being predicted by a fitted DFT. In other words, the DB is the set formed by all points in the DM
plane where ProbDFTfChoosing Ag ¼ ProbDFTfChoosing Bg ¼ 0:5. Theorem 1 formalizes the relationship between the DB and
the EAW.

Theorem 1. If the EAW is assumed to be constant across deliberations and based on DFT, the DB passes through the origin point
(0,0) and points (Dm1, Dm2) in the DM plane satisfying Dm2

Dm1
¼ � q1ðtiÞ

1�q1ðtiÞ, where q1(ti) = Ej[w1(ti,j)].

Proof. It is not difficult to see why the DB passes through the origin point (0, 0). If we have to decide over two alternatives
with the exact same attribute measures (which would be located at the origin point (0, 0)), we would have an equal likeli-
hood of choosing any of these two alternatives regardless how much attention was given to each attribute.

To prove that the other points (Dm1, Dm2) in the DB must satisfy Dm2
Dm1
¼ � q1ðtiÞ

1�q1ðtiÞ
, we should remember that these points

should satisfy the condition of having the preference on alternative An equal to the preference on alternative B at the deci-
sion time ti;ND , or equivalently xA ¼ PAðti;ND Þ � PBðti;ND Þ ¼ 0: Based on (8), this condition will be satisfied if and only if

dA ¼ nAðti;ND Þ � nBðti;ND Þ ¼ 0. Based on (6), when S ¼ f 0
0 f

� �
with |f| < 1, ðI � SÞ�1ðI � SND Þ is a diagonal matrix with equal ele-

ments in the diagonal. Therefore, only the term C �M(ti) � q(ti) needs to be considered to check dA ¼ nAðti;ND Þ � nBðti;ND Þ ¼ 0.
Since:
C �MðtiÞ �qðtiÞ¼
q1ðtiÞm11ðtiÞþq2ðtiÞm12ðtiÞ�q1ðtiÞm21ðtiÞ�q2ðtiÞm22ðtiÞ
�q1ðtiÞm11ðtiÞ�q2ðtiÞm12ðtiÞþq1ðtiÞm21ðtiÞþq2ðtiÞm22ðtiÞ

� �
¼
�q1ðtiÞDm1ðtiÞ� ½1�q1ðtiÞ�Dm2ðtiÞ
q1ðtiÞDm1ðtiÞþ ½1�q1ðtiÞ�Dm2ðtiÞ

� �
ð9Þ
Then we need to have�q1ðtiÞDm1ðtiÞ � ½1� q1ðtiÞ�Dm2ðtiÞ ¼ q1ðtiÞDm1ðtiÞ þ ½1� q1ðtiÞ�Dm2ðtiÞ. Therefore, points in the DB
must satisfy Dm2 ¼ � q1ðtiÞ

1�q1ðtiÞ
Dm1, and Theorem 1 is proved. h

Theorem 1 shows that under the assumption that the EAW remains constant over decision interval D, the DB is described
by a line. Therefore, we can further call DB as decision boundary line (DBL). Fig. 4 shows two examples of DBL lines in the DM
plane, where the dot and star points correspond to human decisions on alternative A and alternative B respectively. The fol-
lowing Proposition 1 is used to describe the corresponding choice probability limits.

Proposition 1. Based on the definition of the DBL, the probability of choosing alternative A based on the DFT model should be
higher than 50% for all the human decisions (dot points) above the DBL, while the probability of choosing alternative B based on the
DFT model should be higher than 50% for all the human decisions (star points) below the DBL. If it is possible to find such a single
EAW that the fitted DFT model can satisfy above condition, it is concluded that a DBL is existed, i.e., the decision maker may keep
the constant EAW on the attributes to make all decisions up to the current decision.
Fig. 4. Linear decision boundary and probabilistic assessment.
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It is worthwhile to notice that for two attributes, two Bernoulli random variables w1ðti;jÞ � Bernoulli ðq1ðtiÞÞ and
w2ðti;jÞ � Bernoulli ðq2ðtiÞÞ are used to describe the random attention weight on each attribute at deliberation step j for
decision i. We will further require that q2(ti) = 1 � q1(ti) subjected to 0 6 q1ðtiÞ 6 1. In this case, DFT modeling only needs
to estimate either q1(ti) or q2(ti). Therefore, in this paper we are only going to discuss the estimation of q1(ti) .

4.2. Fitting a DFT model to a decision maker

The decision maker behavior is characterized by all the decisions up to the current decision time. In this paper, for
two alternatives, the decisions made by a decision maker and DFT will be represented as two vectors:

A�ðtiÞ ¼ ½ a�AðtiÞ a�BðtiÞ �T and bAðtiÞ ¼ ½ âAðtiÞ âBðtiÞ �T , in which a�l ðtiÞ ¼
1 alternative l is chosen by decision maker
0 else

�
and

âlðtiÞ ¼
1 alternative l is chosen by DFT
0 else

�
subjected to

P
16l6na�l ðtiÞ ¼ 1 and

P
16l6nâlðtiÞ ¼ 1, respectively. Therefore, the

problem of fitting a DFT model for a decision maker can be reformulated as how to estimate q1(ti) by solving the following
optimization problem to ensure the best consistency between these two decision vectors.
min
q1ðtiÞ

X
i

dða�AðtiÞ; âAðtiÞÞ

s:t: 0 6 q1ðtiÞ 6 1
ð10Þ
where d(�,�) is a general distance metric function. Some often used distance metric functions include Euclidean distance,
Hamming distance, and Mahalanobis distance. The detail comparisons of these distance metrics can be found in [7].

Based on Theorem 1, if the EAW is assumed to be constant over all decisions, i.e. q1(ti) = q1, some searching algorithms
can be used to find an optimal value of q1, that minimizes the objective function in (10). However, in general it is hard to
guarantee a global minimum by using a searching algorithm. Moreover, since this paper mainly focuses on the sequential
decisions scenario, it would be more interesting and efficient to develop an iterative adaptive estimation approach. For this
purpose, Lemma 1 is given as follows to describe how to estimate the two limit lines for the DBL based on each sequentially
obtained decision.

Lemma 1. Based on Proposition 1, when a DFT model is fitted to a decision maker, the corresponding DBL should fall
between two limit lines: DBLA and DBLB, where DBLA (DBLB) is the line that links the origin point (0,0) and the boundary
point of the decisions made by the decision maker on alternative A (on alternative B).

Fig. 5(a) shows how DBLA and DBLB are constructed, in which a dot point represents a real human decision A
(A�ðtiÞ ¼ ½1 0 �T ), and a star point represents a real human decision B (A�ðtiÞ ¼ ½0 1 �T ). Based on Proposition 1, Fig. 5(a) also
shows that the fitted DBL should fall between DBLA and DBLB to ensure the consistency between the real human decisions
and the predicted decisions by DFT. As a result, the probability of choosing A by DFT model using such a DBL is higher than
50% for all dot points above DBL. A similar conclusion is obtained for all star points below DBL.

4.3. Estimation bounds of EAWs and choice probability

This subsection shows how the estimation bounds of the EAW can be obtained and how to interpret the resultant choice
probability bounds.

Proposition 2. If bA(ti) and bB(ti) denote the corresponding slopes of DBLA and DBLB estimated at macro-scale time ti, the
corresponding two bounds qA

1ðtiÞ and qB
1ðtiÞ for q1 can be obtained based on Proposition 1 and Lemma 1 as:
Fig. 5. Two limit lines of DBL and sequential updating principle.
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qA
1ðtiÞ ¼

bAðtiÞ
bAðtiÞ � 1

and qB
1ðtiÞ ¼

bBðtiÞ
bBðtiÞ � 1

ð11Þ
Since the slopes bA(ti) and bB(ti) are negative, conditions 0 6 qA
1ðtiÞ 6 1 and 0 6 qB

1ðtiÞ 6 1 are satisfied. Next, Proposition 3
describes how choice probability bounds can be obtained by DFT using the bounds qA

1ðtiÞ and qB
1ðtiÞ respectively.

Proposition 3. When the estimated bounds qA
1ðtiÞ and qB

1ðtiÞ are used in the DFT model instead of the true, however unknown,
parameter q1, the DFT model provides a corresponding lower and upper bound for the choice probability of alternative A. Similar
bounds can be obtained for the choice probability on alternative B.

Based on Proposition 3, the following two equivalent conditions are held:

(i) ProbDFT
qA

1
ðtiÞfDFT choose Ajreal decision is Ag 6 ProbDFT

q1
fDFT choose Ajreal decision is Ag
6 ProbDFT
qB

1ðtiÞfDFT choose Ajreal decision is Ag ð12Þ
(ii) ProbDFT
qB

1ðtiÞfDFT choose Bjreal decision is Bg 6 ProbDFT
q1
fDFT choose Bjreal decision is Bg
6 ProbDFT
qA

1ðtiÞfDFT choose Bjreal decision is Bg ð13Þ

ProbDFT
qA

1 ðtiÞfDFT choose Ajreal decision is Ag is used to denote the probability of choosing alternative A by DFT, using the
Here,
EAW of qA
1ðtiÞ and under the condition that the human decision maker chose alternative A. Similar definitions are used for the

other probabilities.

Proposition 3 can be explained by Fig. 5(a). For example, in quadrant 4, if the attribute measure point falls on DBL, the
predicted probability of choosing A (or B) is 50% based on the DFT model with the true q1, while if the point is far above
DBL, it leads to a higher probability of choosing A (higher than 50% based on Proposition 1). In contrast, when qA

1ðtiÞ
(qB

1ðtiÞ) is used in the DFT model instead of the true q1, the corresponding 50% probability decision line is artificially moved
up (moved down) from true DBL to DBLA (DBLB). As a result, the given point C in Fig. 5(a) is located much less above DBLA

(much farther above DBLB) than above DBL, which causes an under-estimation (over-estimation) of the probability of
choosing A by using the DFT model with qA

1ðtiÞ (qB
1ðtiÞ) corresponding to DBLA (DBLB). Therefore,

ProbDFT
qA

1ðtiÞfDFT choose Ajreal decision is Ag and ProbDFT
qB

1ðtiÞfDFT choose Ajreal decision is Ag provide a lower and upper bound of

ProbDFT
q1ðtiÞfDFT choose Ajreal decision is Ag, respectively. A similar interpretation can be given to the case of the real human

decision on alternative B in (13).

4.4. Performance measure of estimated bounds of EAWs

Using Proposition 2, a way to obtain qA
1ðtiÞ and qB

1ðtiÞ based on the slopes bA and bB has been presented. Moreover, it would
be desired to know whether such bounds, qA

1ðtiÞ and qB
1ðtiÞ, are good enough for the fitted DFT model to predict future deci-

sions. Therefore, a way of assessing the uncertainty imposed by these bounds to our estimator would be of great interest. For
this purpose, based on (12) and (13), the following performance index is defined to describe the probabilistic uncertainty
range of the decisions that are made by the estimated DFT model using the bounds of the EAW q1(ti)A and q1(ti)B:
UðDm1;Dm2Þ ¼ ProbDFT
qB

1ðtiÞfDFT choose Ajreal decision is Ag � ProbDFT
qA

1ðtiÞfDFT choose Ajreal decision is Ag
or,
UðDm1;Dm2Þ ¼ ProbDFT
qA

1ðtiÞfDFT choose Bjreal decision is Bg � ProbDFT
qB

1ðtiÞfDFT choose Bjreal decision is Bg ð14Þ
U(Dm1, Dm2) is defined as U(x, y):R2 ? [0,1). If U(x, y) ? 0, the upper and lower bounds of the probability of choosing A or B
by DFT converges. As a result, the estimation bounds of EAW also converges to the true q1. The average uncertainty measure
index is defined as 1

jurj
RR

urUdA0, where ur defines the uncertainty region, and |ur| is equal to the area of the uncertainty region.

4.5. Estimation of slope bounds of DBL

In Section 4.2, Lemma 1 provides the principle of how to obtain DBLA and DBLB to match all available human decisions.
However, a formal definition of the method has not been provided. This subsection presents how to find DBLA and DBLB

mathematically by estimating bA and bB through an optimization formulation and how to adaptively update this estimation
based on sequentially obtained decisions.

The following optimization problem is formalized based on the principle in Lemma 1, which intends to estimate bA and bB

of DBL to match all available human decisions.
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max
bA ;bB

jbA � bBj

s:t: Dm2ðtiÞ– � Dm1ðtiÞ;8b 2 ðbA
; bBÞ in quadrant 2; or 8b 2 ðbB

; bAÞ in quadrant 4

Dm2ðtiÞ½1 � 1� � ½a�AðtiÞ a�BðtiÞ�T P Dm1ðtiÞ ½bA � bB� � ½a�AðtiÞ a�BðtiÞ�T
ð15Þ
where i = 1, 2, . . . indicates all available decisions at either quadrant 2 or 4. The first condition in (15) keeps all provided deci-
sions outside the region defined by the two boundary lines DBLA and DBLB. The second condition keeps all human decisions

belonging to alternative A ( a�AðtiÞ a�BðtiÞ½ �T ¼ ½1 0 �T ) above DBLA (Dm2 P bADm1); while also keeping all human decisions

belonging to alternative B ( a�AðtiÞ a�BðtiÞ½ �T ¼ ½0 1 �T ) below DBLB (Dm2 6 bBDm1).
While the formulation of the problem provided in (15) is effective, it might not be efficient for applications with sequen-

tial decisions. For this reason, we have developed an iterative algorithm that is efficient to model the sequentially obtained
decisions. Fig. 5(b) shows how DBL is updated when a new decision is available. When a new decision falls between the pre-
viously estimated DBLA and DBLB, the newly updated DBLA or DBLB should pass this newest boundary points if the decision
maker chooses alternative A or alternative B, respectively. As shown in Fig. 5(b), DBLA is adjusted to include this new sample
of human decision A (dot point D). A flowchart for implementing this sequential estimation algorithm is given in Fig. 6.

It is worthwhile to note that DBLA or DBLB will only be updated if an incoming new point falls between DBLA and DBLB.
However, it is possible to observe a conflict decision (e.g. an incoming new star point falling above DBLA). As shown in
Fig. 5(c), a star point E represents a real human decision on alternative B, but point E falls above DBLA leading to the prob-
ability of choosing A higher than 50% by using the DFT model based on Proposition 1. It is then called a conflict point. If this
conflict is not due to random decision uncertainty or human errors, it might indicate a change in the EAW. This case will be
studied in Section 4.6.

4.6. Analysis of decision uncertainty and inconsistency

In the sequential decision making scenario, the performance feedback may sometimes be provided to decision makers for
improving their future decision performance [10]. In this paper, we assume that such feedback may cause a decision maker
Fig. 6. Pseudocode for sequential estimation of DBL’s slope bounds.
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to make some shift on his/her EAWs in an attempt to improve future decisions. This shift of EAWs may lead to conflict
decisions that are probabilistically inconsistent with those previously observed decisions under the un-shifted EAWs. On
the other hand, a single inconsistent decision may also be due to random human decision errors. In this case, it is important
to avoid over-fitting of a DFT model due to an inappropriate adjustment on EAWs. As shown in [15], a complex model may fit
a data set well, but may not bear an interpretable relationship with the underlying mental process. This subsection discusses
how to systematically judge whether an inconsistent decision is due to a change of human attention weights by assessing the
likelihood of such a change.

An inconsistent decision is observed at time tK if one of the following cases is held:

(a) Under the real human decision A of A�ðtKÞ ¼ ½1 0 �T , the attribute measure (Dm1(tk), Dm2(tk)) is located below DBLB,
i.e., Dm2(tK) < Dm1(tK)bB; or

(b) Under the real human decision B of A�ðtKÞ ¼ ½0 1 �T , the attribute point (Dm1(tk),Dm2(tk)) is located above DBLA, i.e.,
Dm2(tK) > Dm1(tK)bA .

In order to justify whether an inconsistent decision is caused due to a change of human attention weights, or due to deci-
sion uncertainty or human errors, we compare the DFT predicted probabilities of generating the inconsistent decisions based
on the previous estimation of qA

1ðtK�1Þ or qB
1ðtK�1Þ (assume no change occurs at tK), with the predicted probabilities of the

same decisions based on the new estimation of qA
1ðtKÞ or qB

1ðtKÞ (assume a change starts at tK). In the following discussion,
we will denote these two probability bounds by P1 and P2.

P1 is defined under the condition of the EAW has no change at tK, which is the upper bound of the probability of gener-

ating this inconsistent human decision A⁄(tK) by DFT using true q1, i.e., P1 ¼ ProbDFT
qA

1 ðtK�1Þ or qB
1ðtK�1Þf

bAðtKÞ ¼

A�ðtKÞgP ProbDFT
q1
fbAðtKÞ ¼ A�ðtKÞg. This probability can be computed by:

(a) When the incoming real human decision A falls below DBLB,
P1 ¼ ProbDFT
qB

1ðtK�1Þfchoose A at ðDm1ðtKÞ;Dm2ðtKÞÞjA�ðtKÞ ¼ ½1 0 �T ; Dm2ðtKÞ < Dm1ðtKÞbBg
(b) When the incoming real human decision B falls above DBLA,

P1 ¼ ProbDFT

qA
1ðtK�1Þfchoose B at ðDm1ðtKÞ;Dm2ðtKÞÞjA�ðtKÞ ¼ ½0 1 �T ; Dm2ðtKÞ > Dm1ðtKÞbAg ð16Þ
P2 is defined in (7) under the condition that the EAW changed at tK. Based on the proposed algorithm (flowchart in Fig. 6),
the slope bounds of DBL are updated at time tK according to the real human decision A⁄(tK) as follows:

(a) For a real human decision A�ðtKÞ ¼ ½1 0 �T ,
Set bA

new ¼ Dm2ðtKÞ=Dm1ðtKÞ and
(i) If Dm1(tK) < 0, Dm2(tK) > 0 (in quadrant 2), then
bB
new ¼minfDm2ðtiÞ=Dm1ðtiÞjA�ðtiÞ ¼ ½0 1 �;Dm2ðtiÞ < Dm1ðtiÞbA

new;8i < Kg:
(ii) If Dm1(tK) > 0, Dm2(tK) < 0 (in quadrant 4), then

bB

new ¼maxfDm2ðtiÞ=Dm1ðtiÞjA�ðtiÞ ¼ ½0 1 �;Dm2ðtiÞ < Dm1ðtiÞbA
new;8i < Kg
(b) Similarly, for a real human decision A�ðtKÞ ¼ ½0 1 �T ,
Set bB

new ¼ Dm2ðtKÞ=Dm1ðtKÞ and
(i) If Dm1(tK) < 0, Dm2(tK) > 0 (in quadrant 2), then
bA
new ¼maxfDm2ðtiÞ=Dm1ðtiÞjA�ðtiÞ ¼ ½1 0 �; Dm2ðtiÞ > Dm1ðtiÞbB

new;8i < Kg or
(ii) If Dm1(tK) > 0, Dm2(tK) < 0 (in quadrant 4), then

bA

new ¼minfDm2ðtiÞ=Dm1ðtiÞjA�ðtiÞ ¼ ½1 0 �; Dm2ðtiÞ > Dm1ðtiÞbB
new;8i < Kg
After getting bA
new and bB

new, the corresponding bounds of qA
1ðnewÞ and qB

1ðnewÞ can be obtained based on Proposition
3. When qA

1ðnewÞ and qB
1ðnewÞ are used in the DFT model to predict the decisions for the old scenarios ti (1 6 i < KÞ), it

will generate some inconsistent decisions on old scenarios. The set of these inconsistent decisions will be donated by
X.

P2 is defined as the lower bound of the predicted probability of generating the X set by using qA
1ðnewÞ and qB

1ðnewÞ in the

DFT model, i.e., P2 ¼ ProbDFT
qA

1ðnewÞorqB
1ðnewÞfbAðtiÞ 2 Xg 6 ProbDFT

q1
fbAðtiÞ 2 Xg. Since incoming decisions will be assumed to be

independent of each other, these probabilities are calculated by:



530 A.G. Abad et al. / Information Sciences 278 (2014) 520–534
(a) For a real decision A with A�ðtKÞ ¼ ½1 0 �T ,
P2 ¼
Y

06i<K

ProbDFT
qA

1 ðnewÞfchoose B at ðDm1ðtiÞ;Dm2ðtiÞÞjA�ðtiÞ ¼ ½0 1 �T ; Dm2ðtiÞ > Dm1ðtiÞbA
new; 8i < kg
(b) For a real decision B with A�ðtKÞ ¼ ½0 1 �T ,
P2 ¼
Y

06i<K

ProbDFT
qB

1ðnewÞfchoose A at ðDm1ðtiÞ;Dm2ðtiÞÞjA�ðtiÞ ¼ ½1 0 �T ; Dm2ðtiÞ < Dm1ðtiÞbB
new; 8i < Kg ð17Þ
Based on the probability bounds of P1 and P2, the following justification rule is used to determine whether the decision
maker’s EAWs has changed or not.

Justification Rule: When an inconsistent decision is observed at time tK, if P2 > P1, it is concluded that a change in the
human EAWs has occurred. Otherwise, the inconsistent decision is due to the prediction uncertainty or decision errors.

5. Simulations and experimental case study

5.1. Case I: sequential estimation with constant EAWs

In Case I, we will use a simulation to demonstrate the proposed sequential estimation algorithm for estimating the
bounds of EAWs. In this case, the EAW is assumed to be constant over all decisions. The simulated scenario corresponds
to a two alternatives decision based on two attributes. Each of the two attributes is assumed to follow a uniform distribution
over the range of 0 < Dm1 < 1 and�1 < Dm2 < 0, respectively. In other words, each decision sample is located in quadrant 4 of
the DM plane. To generate the alternative selected in each decision, a DFT model was used with an EAW of 0.6 on attribute 1.
The simulated decisions are assumed to be available one by one sequentially. The DFT modeling is going to be done based on
the generated sequential decisions and using the proposed algorithm shown in Fig. 6.

Fig. 7 depicts several exemplary steps of the sequential adjustment of the bounds of DBL. For example, A�ðt1Þ ¼ ½1 0�T

(a dot point represents decision A) is used to obtain DBLA at the first subfigure; and A�ðt2Þ ¼ ½1 0�T (a star point represents
decision B) is used to obtain DBLB at the second subfigure. However, there is no adjustment on DBL for A�ðt3Þ ¼ ½1 0�T because
the attribute measures at t3 of decision B (star point) is below DBLB. Similarly, at the third subfigure, since the sample point
(dot) at t4 falls between DBLA and DBLB and A�ðt4Þ ¼ ½1 0�T , a new adjustment on DBLA is performed. This adjustment nar-
rows further the bounds of DBLA and DBLB. The bottom three subfigures in Fig. 7 show how the bounds of DBLA and DBLB are
continuously narrowed through the sequential adjustment of DBLA or DBLB at time t9, t13, and t37 respectively.

At each adjustment step of DBLA or DBLB, the corresponding bounds of the EAWs are obtained based on the estimated
bounds of DBLA and DBLB. Fig. 8 shows how the estimation of qA

1ðtiÞ or qB
1ðtiÞ is narrowed over decision times and converges

to the true value of q1 = 0.6 .
To further show the performance of the estimation bounds, the function U(x, y) is calculated based on (14) by using qA

1ðtiÞ
and qB

1ðtiÞ (i = 0 and i = 100) in the DFT model. A corresponding contour levels plot of U(x, y) is presented in Fig. 9(a) and (b),
respectively. As expected, the uncertainty region is significantly reduced at step 100.

5.2. Case II: sequential estimation with a shift in the EAW

A decision maker may change his/her attention weights during a course of sequential decisions at any time due to differ-
ent reasons. These reasons may include reinforcement learning of his/her decision-making performance based on observa-
tional performance feedback, cumulative experience, and/or a significant environmental change that causes a shift on his/her
Fig. 7. Illustration of sequential estimation of DBL bounds.



Fig. 8. Estimation bounds of the EAWs in Case I.

Fig. 9. U(x,y) function before knowing the first decision and after decision step 100.
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risk attitude or belief on alternatives. Under such a scenario with a shifting attention weight, the estimation of new EAW
boundaries is adaptively adjusted by using the maximum likelihood estimation principle discussed in Section 4.6. The
determination of whether an inconsistent conflict decision is due to decision uncertainty/errors or a shift of EAW, is based
on the comparison of two probabilities: P1 in Eq. (16) and P2 in Eq. (17), which is given by the Justification Rule in
Section 4.6.

Case II demonstrates how the proposed sequential estimation algorithm adapts to a change in the EAWs. The same sim-
ulation conditions of Case I are used in Case II, with the exception that q1(ti) changes from 0.6 to 0.2 at i = 20. The sequential
estimation procedure shown in Fig. 6 is conducted. However, in Case II the estimation of the slope bounds of DBL are re-ini-
tiated when an inconsistent decision is detected, based on the justification rule (proposed in Section 4.6). Fig. 10 shows the
sequential estimation results of qA

1ðtiÞ and qB
1ðtiÞ, which demonstrate the adaptive estimation capability of the proposed

sequential estimation method.

5.3. Case III: human in the loop experimental tests

Case III illustrates the effectiveness of using a DFT modeling approach to characterize human decision maker’s behaviors.
In this case study, real human decision samples were used. The experiment consisted of 9 sequential decision making sce-
narios; at each of these 9 instances, a subject was asked whether to buy stock A or stock B. The decisions were made based on
two attribute values, i.e., investment safety and return, which were shown on the computer screen to the subject. The attri-
bute values corresponding to each decision were obtained using a pre-trained Bayesian belief network (BBN) developed by
Lee et al. [13]. The attributes M(ti) (i = 1,2, . . .,9) are obtained by assessing stock environmental conditions based on
exogenous factors that include investment history, available fund, index increment, and previous weights. Table 1 shows



Fig. 10. Estimation bounds of the EAWs in case II.

Table 1
Attribute measurement M(ti) and the transformed value DM(ti) .

i Stock A safety Stock A return Stock B safety Stock B return Dm1 Dm2 Dm2/Dm1

1 2.5 1.43 0.39 3.37 2.11 �1.94 �0.9194
2 3.74 1.4 0.9 3.65 2.84 �2.25 �0.7923
3 3.65 2.19 1.21 3.65 2.44 �1.46 �0.5984
4 3.12 1.4 1.46 3.17 1.66 �1.77 �1.0663
5 3.03 1.49 0.34 2.5 2.69 �1.01 �0.3755
6 3.26 1.43 1.71 3.15 1.55 �1.72 �1.1097
7 3.31 2.3 2.39 3.57 0.92 �1.27 �1.3804
8 3.01 2.11 2.33 4.04 0.68 �1.93 �2.8383
9 3.68 1.71 0.96 3.43 2.72 �1.72 �0.6324

Table 2
Estimation of DFT parameters from decisions provided by DM.

i Provided by the subject Estimated by sequential algorithm bB
1ðtiÞ 6 b1 6 bAðtiÞ;qA

1ðtiÞ 6 q1 6 qBðtiÞ

Decision Adjustment bA bB qA
1ðtiÞ qB

1ðtiÞ

1 Bought B DBLB 0 �0.9194 0 0.4790
2 Bought B DBLB 0 �0.7923 0 0.4420
3 Bought B DBLB 0 �0.5984 0 0.3744
4 Bought B – 0 �0.5984 0 0.3744
5 Bought A DBLA �0.3755 �0.5984 0.2730 0.3744
6 Bought B – �0.3755 �0.5984 0.2730 0.3744
7 Bought B – �0.3755 �0.5984 0.2730 0.3744
8 Bought B – �0.3755 �0.5984 0.2730 0.3744
9 Bought A DBLA �0.6324 Initiated 0.3874 Initiated
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the attribute measurements and the transformed DM(ti) values based on the proposed method. The decisions provided by
the subject are shown in column 2 of Table 2. At each decision making instance, the EAW of a DFT model is sequentially esti-
mated to fit the observed incoming decisions.

Based on the sequential decisions, the slope bounds bA and bB of DBL are sequentially estimated. Since all nine decisions
are located in quadrant 4, the bounds of bA and bB correspond to the upper and lower bounds of the true slope b of DBL as
shown in Fig. 5(a). As a result, the bounds of qA

1 and qB
1 correspond to the lower and upper bounds of the true EAW. Table 2

shows the estimation updates at each of these 9 decision trials.
Fig. 11 shows how the DBL bounds are updated based on the sampled DM(ti) ’s. In particular, DBLB is updated at decisions

1, 2, 3 and DBLA is updated at decision 5. There is no inconsistent decision observed during decisions 1–8. However, a
conflict point is observed at sample 9. Therefore, a further analysis is needed to justify if the subject changes his EAW at
decision 9.



Fig. 11. Sequentially updating of DBL in Case III.

Table 3
Probability bounds for choosing alternative A based on DFT.

i Provided by the subject Based on DFT

Decision Lower probability bound Upper probability bound

1 Bought B 0.0041 0.1058
2 Bought B 0.0130 0.2046
3 Bought B 0.0978 0.5000
4 Bought B 0.0012 0.0491
5 Bought A 0.5000 0.8844
6 Bought B 0.0008 0.0395
7 Bought B 0.0003 0.0150
8 Bought B 0.0000 0.0000
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Based on the justification rule presented in Section 4.6, the probability bound P1 is P1 ¼ ProbDFT
jqB

1ðt8Þ¼0:3744

fchoose A at point ðDm1ðt9Þ;Dm2ðt9ÞÞg ¼ 0:4689: In order to calculate P2, we assume that the EAW changes at Step 9 and

a new estimation of the slope bound of DBLA and qA
1ðnewÞ are obtained as bA

new ¼ Dm2ðt9Þ=Dm1ðt9Þ ¼
�1:72=2:72 ¼ �0:6324 and qA

1ðt9Þ ¼ bA
=ðbA � 1Þ ¼ 0:3874. Based on those new bounds, an inconsistent decision is observed

on decision 3. Based on (17), we have P2 ¼ ProbDFT
jqA

1 ðnewÞ¼0:387387fAlternative B at point ðDm1ðt3Þ;Dm2ðt3ÞÞg ¼ 0:4695. According
to the justification rule in Section 4.6, it is concluded that the human’s EAW is changed at decision 9 since P2 > P1. Table 3
also provides the probability bounds of all decision up step 8 based on the estimated bounds of qA

1ðt8Þ and qB
1ðt8Þ. It can be

seen that the advantage of using DFT model is that it can not only model human’s decisions, but also can provide a quanti-
tative probabilistic assessment of human decision’s uncertainty and risk.
6. Conclusions

This paper presents a DFT modeling approach to represent the human decision maker behavior. In this approach, the hu-
man’s EAWs were considered as the key parameters of the DFT model to be estimated. This estimation was performed to fit
the DFT model by matching the predicted decisions using DFT with the decisions made by a human decision maker. It is
shown that a linear decision boundary can be found if the EAW of the decision maker is assumed to be constant across deci-
sions. A probability-based justification rule is provided in the paper to determine if an inconsistent decision is due to a
change in the EAWs or due to intrinsic modeling uncertainty. Moreover, a sequential estimation/updating algorithm is pro-
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posed to obtain the estimation bounds of the EAWs. Two simulations were conducted to demonstrate the effectiveness of the
proposed algorithm under two distinct scenarios corresponding to constant and varying EAWs respectively. Furthermore, a
real case study was conducted via a human in the loop experiment, which demonstrated the effectiveness of the DFT mod-
eling approach in characterizing the human’s decision making behaviors.

7. Future work

Future research is needed to extend this work to a more general decision making scenario consisting of more than two
alternatives and based on more than two attributes. In a n-alternatives scenario, we should consider n different DM plane’s,
each corresponding to the comparison of one of the n alternatives with respect to the other n � 1. In each DM plane, the deci-
sion boundary is used to indicate which alternative should be chosen. With respect to the multi-attribute two-alternative
scenario, a hyper plane can be used as a high dimensional linear classifier to represent the decision boundary. These same
ideas may be further extended to a generalized scenario consisting of multiple alternatives. These two tasks are on-going
research for our next paper

Another interesting future direction is to investigate a general decision rule by considering the decision threshold on the
preference state as an unknown parameter in the DFT mode. In this situation, the decision threshold should be estimated
simultaneously in parallel with the attribute weights.
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