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Abstract: Unmanned Ground Vehicle (UGV) missions include situations 
where a UGV has to choose between alternative paths, and are often limited by 
the available on-board energy. Thus, we propose a dynamic energy-efficient 
path planning algorithm that integrates mission prior knowledge with real-time 
sensory information to identify the most energy-efficient path for mission 
completion. Our proposed approach predicts and updates the distribution of the 
energy requirement for alternative paths using recursive Bayesian estimation 
through two stages: (a) exploration – road segments can be explored to reduce 
their energy prediction uncertainty; (b) exploitation – the most reliable path is 
selected using the collected information in the exploration stage and then 
traversed. Our simulation results show that the proposed approach outperforms 
offline methods, as well as a method that relies on exploitation only to identify 
the most energy-efficient path. 
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1 Introduction 

1.1 Problem statement 

Unmanned Ground Vehicles (UGVs) are entering the economic mainstream and are now 
being used extensively in military and commercial applications (Tilbury and Ulsoy, 
2011). Even with a rapid increase in the number of UGVs, several studies show average 
failure rates (every 6–20 h) much worse than the 96 h benchmark established by the 
Department of Defense (Kramer and Murphy, 2006). Despite their sub-optimal reliability 
(Carlson and Murphy, 2003; Carlson and Murphy, 2005; Carlson et al., 2004; Stancliff 
and Dolan, 2005; Sadrpour et al., 2011), UGVs are expected to be a safe and cost-
efficient option for space missions, rescue operations and military applications. 

One of the key factors that limit the utility of small tele-operated battery-powered 
UGVs in surveillance missions is the available on-board energy. The vehicle locomotion 
is the main source of energy consumption for most UGVs (Sadrpour et al., 2013a). 
Typical mission duration is currently on the order of 1–2 h, while it is often desirable to 
carry out much longer missions (e.g. 8–10 h) between lengthy recharging stops. A typical 
surveillance mission consists of various tasks and several alternative paths. Due to 
limited energy storage capacity, it is essential to predict the energy requirement of 
alternative paths to help the operator with path planning. The goal of surveillance 
missions studied here is to start from a known location on a map and reach a destination  
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point using one of the available alternative paths. The objective of this research is to  
identify the path with the highest probability of successfully completing the mission 
using the information available at any given time. One failure mode of interest is the 
unanticipated depletion of the UGV’s stored energy, which results in failures to reach the 
destination point. The shortest path is not always the most energy-efficient since in 
addition to length, other factors such as road roughness and grade and driving style affect 
the energy consumption. Additionally, the recommended criterion of the lowest failure 
probability, instead of the minimum expected energy consumption, considers the prediction 
uncertainty as well as the expected path energy requirement in decision-making. 

The rest of the paper is organised as follows: Section 1.2 provides an overview of the 
literature in the area of path planning with energy consideration, which helps justify the 
contribution of our research. Section 2 is an overview of the proposed methodology. 
Section 3 describes in detail the proposed Bayesian algorithm for the most energy-
efficient path planning. Section 4 presents a comparative simulated case study to 
illustrate the advantages of the approach. Concluding remarks are given in Section 5. 

1.2 Literature review and contributions 

In this paper, a surveillance mission is represented by a network where arcs symbolise 
road segments and nodes represent intersections of road segments. The cost of each arc is 
the energy required to traverse the arc. This energy requirement is affected by variable 
random factors such as road surface conditions and grades with unknown probabilistic 
distributions. Mei et al. (2005) measured the power consumption of different components 
of UGVs and presented strategies for saving of energy that take advantage of UGV idle 
time, speed, etc. However, their deterministic energy models cannot consider random 
road grade variations, and no case study is presented on applying such strategies for real-
time path planning. 

Our problem falls within the general class of Shortest Path Problems (SPP). 
Deterministic SPPs (Denardo, 2003) as well as stochastic shortest path problems (SSPP) 
with known cost distributions (Powell, 2011; Fan et al., 2005) have been extensively 
studied. A stochastic most reliable path problem with normally and correlated random 
costs were investigated by Seshadri and Srinivasan (2010); however, the distributions of 
costs were assumed to be precisely known prior to the mission. Our paper relaxes the 
assumption of known path cost distributions, and further considers the uncertainty of path 
costs in the planning stage. 

When the distributions of paths’ costs are not known, adaptive learning via 
exploration becomes a viable approach in decision-making. Exploration is a process by 
which an arc cost distribution is estimated more precisely by collecting actual operating 
data for a short period from the arc. Ryzhov and Powell (2011) introduced an exploration 
policy based on the Knowledge Gradient (KG) in a stochastic SPP with unknown cost 
distributions, in which exploration could be performed on any arc in the network at any 
given time. In contrast, UGV can only collect measurements from the sequential road 
segments that it traverses. Also, our exploration cost increases when additional sampling 
information is needed. 
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Several papers investigate variations of the Travelling Salesman Problem (TSP) 
(Applegate et al., 2011) for UGV path planning with energy consideration. In the work of 
Wei et al. (2012), a path planning problem was discussed for mobile robots with the  
objective of minimising the energy requirement using docking stations with deterministic 
arc costs. A TSP for mobile robots was considered in the study of Sipahioglu et al. 
(2008) with dynamically changing paths using a deterministic cost model. Moreover,  
energy-based path planning for cabled robots was studied by Borgstrom et al. (2008). 
Their goal was to maximise the accumulated rewards by visiting a sequence of nodes in a 
network. A similar concept is utilised in our proposed approach during the exploration 
stage. We prefer road segments whose exploration yields the maximum reduction of the 
prediction uncertainty by considering a stochastic cost model. 

Another class of energy-efficient path planning for small UGVs deals with a 
coverage task problem. In a coverage task, the UGV is required to move through an area 
and travel within a certain distance of predefined way-points. Broderick et al. (2012) 
investigated an energy-efficient coverage task using optimal control. Unlike a shortest 
path formulation, the UGV must visit every point on the map. Coverage tasks were also 
studied in the work of Mei et al. (2004) with a focus on minimising the energy for 
locomotion by optimally tuning the vehicle velocity and trajectory. However, their 
models were deterministic and did not consider the impact of terrain variations on power 
consumption. 

Reinforcement learning (RL) is a class of online learning approaches, where an agent 
interacts with a stochastic and dynamic environment and learns a policy to maximise a 
measure of its long-term reward (Sutton and Barto, 1998; Dearden et al., 1999; Dearden 
et al., 1998). Many RL approaches deal with the trade-off between exploration and 
exploitation. There are three major differences between those traditional RL frameworks 
and the proposed learning scheme to be discussed in this paper: (a) in our problem, the 
risk associated with exploration grows with additional measurements due to limited on-
board energy; (b) since there is no inherent exploration risk in RL when dealing with 
Markov decision processes, most exploration strategies have an oscillatory behaviour in 
which alternatives or states are visited in an alternating fashion. With a UGV, due to 
physical constraints, such exploratory strategies are not energy-efficient; (c) the reward 
function in our paper uses the criterion of lowest failure probability (highest reliability) 
that considers both the expected energy requirement of road segments and their 
covariance, resulting in a reward structure that is not independent of past or future states 
of the vehicle. Seshadri and Srinivasan (2010) showed, through a counterexample,  
how the inclusion of covariance in the structure of the reward function results in 
inapplicability of traditional shortest path algorithms for finding the most reliable path. 

The objective of this paper is to present a novel path planning problem for UGVs, 
under a network of alternative paths with the following characteristics: (a) the arc cost 
distributions are not precisely known a priori; (b) the arc costs may be correlated; (c) the 
distributions of arc costs can be updated online based on real-time measurements; and  
(d) UGVs can only collect measurements from the road segment that they traverse. To 
identify an energy-efficient path in the network, we propose a heuristic approach that 
integrates mission prior knowledge and real-time measurements for adaptively predicting 
the energy requirement distributions of alternative paths. The proposed method is 
described in the next section. 
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2 Methodology overview 

Figure 1a illustrates the framework of the proposed approach. Let us assume the vehicle 
has reached an intersection (node) in a network (see Figure 1b), from which alternative  
road segments emanate. A vehicle longitudinal dynamic model and mission prior 
knowledge are used for estimating the initial distribution (e.g. mean and variance) of 
energy requirement of alternative paths (Sadrpour et al., 2012). The first step uses the 
initial distributions to remove paths that are very unlikely to be the most energy-efficient 
from consideration through a process termed pruning. For instance, Figure 2a depicts  
the initial distributions of three alternative paths of the network in Figure 1b, i.e. 

1 2 3={ , , }Q q q q , where the set qi contains the indexes (e.g. {a, b, c, …}) of road segments 

of path i, based on mission prior knowledge assuming that the vehicle is at node 1. The 
figure shows that the distribution of the third path exceeds and does little overlap with the 
first two paths. If this situation arises, in favour of {q1, q2}, path q3 can be pruned without 
a need for exploration. If initial pruning results in only one unpruned path, no further 
action is needed and UGV can use the remaining path to reach the destination. However, 
some paths may still remain overlapping after pruning due to large energy prediction 
uncertainty. In this case, exploration of the remaining paths may become necessary,  
in which some of the available energy is used to explore the remaining alternatives  
(i.e. traverse and backtrack if necessary) to reduce their prediction uncertainty and bias. 

The exploration step includes two sub-steps. First is to evaluate the exploration 
feasibility, i.e. to determine if exploration of alternative road segments emanating  
from the current node is feasible considering the predicted energy of the paths  
and the remaining stored energy in the UGV. If exploration is not feasible, the most  
fuel efficient path is selected based on the available information. The criterion  
for ranking and selection of energy-efficient paths is defined by the ratio 

=
failure threshold predicted energy expectation

z
prediction standard deviation

 
 
 

, which is termed the z-score and 

considers both the (expected) predicted path energy requirement as well as the prediction 
uncertainty. If exploration is feasible, in sub-step 2, the number of exploration 
measurements from each road segment, i.e. the exploration budget assignment, is 
determined using an energy-efficient strategy based on the reduction of the energy 
prediction uncertainty. By collecting the measurements, the energy distributions are 
updated. For example, Figure 2b shows the updated distribution of the remaining paths, 
i.e. {q1, q2}, after exploring road segments {a, b}. Since the distributions of {q1, q2} no 
longer overlap, using the pruning criterion, path q2 is eliminated in favour of q1. The 
exploration may not always lead to one remaining unpruned path. In either case, the road 
segment of the most energy-efficient path based on the updated energy distributions is 
selected to be exploited. 

The exploitation step includes traversing a road segment until the vehicle reaches the 
next intersection in the network. During exploitation, pruning still continues in real-time. 
The exploration and exploitation steps are repeated whenever the vehicle reaches a node 
with multiple alternative paths until it arrives at the destination node. For instance, based  
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on Figure 2b, path q1 = {a, c} is selected to be exploited since it has the highest 
efficiency (highest z-score) and because other alternatives paths have been pruned. 
Section 3 will describe the above steps in detail. 

Figure 1 (a) Methodology overview. (b) Example of a simple network with 3 nodes, 4 road 

segments, start node 1, and end node 3. The alternative paths are 1 2={ ={ , }, =Q q a c q  

3{ }, ={ , }}b q a d  
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(b) 
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Figure 2 (a) The initial energy requirement distribution of a hypothetical mission with three 
alternative paths (see Figure 1b) based on mission prior knowledge. Path q3 energy 
requirement is clearly higher than {q1, q2}. However, it is not clear which of  
the remaining paths is more energy-efficient. (b) The updated distributions of  
energy requirement of {q1, q2} after exploring them. Q2 can be pruned in favour of  
q1 which is estimated to have the highest probability of success (see online version  
for colours) 

 
(a) 

 
(b) 
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3 Methodology 

3.1 Vehicle model 

A linearised vehicle longitudinal dynamics model, as typically used for power 
consumption studies in automobiles, is also utilised here (Ulsoy et al., 2012). The UGV 
power consumption is modelled as follows (Sadrpour et al., 2013b): 

 ( )= ( ) ( ) ( ) ( )IP t W t fW ma t C u t t        (1) 

where P(t) is the power at time t, W is the vehicle weight, θ(t) is the road grade, f is the 
road rolling resistance coefficient, m is the vehicle mass, a(t) is the acceleration, CI is the 
internal resistance coefficient, u(t) is the velocity, β represents other constant sources of 
energy depletion, such as electronic sensors on-board the vehicle, and ε(t) is the model 
error following NID(0, 2

 ). Other time varying factors, which have a smaller relative 

significance, such as aerodynamic drag, are neglected here due to the low operating 
speed of small UGVs. Also, according to experimental results presented by Sadrpour  
et al. (2013a), the vehicle slippage is negligible on steep uphill and downhill roads, and 
the current vehicle longitudinal dynamics model does not consider slippage. 

In practice, the actual instantaneous UGV power consumption can be obtained in 
real-time by multiplying the measured current and voltage of the battery. The vehicle 
velocity can also be measured using a wheel velocity encoder. The acceleration can be 
estimated based on the difference between two consecutive velocity measurements. 
Generally, the exact values of rolling resistance coefficient, road grade and vehicle 
internal resistance are difficult to know beforehand; however, some rough knowledge of 
the vehicle characteristics and road conditions, which can be generally expressed by a 
prior probability distribution, might be available. 

Equation (1) can be rewritten as a linear regression model: 

( )= ( ) ( )y t Cx t t  (2) 

where ( )= ( ) ( ) ( )y t P t ma t u t   , ( )= ( )x t u t W  and '= ( ) IC t f C    is the regression 

model parameter that combines the grade, rolling resistance coefficient and internal 
frictional losses. For ease of notation and without loss of generality, we define 

' = /I IC C W . The proposed vehicle model was validated by experimental studies of 

Sadrpour et al. (2013a, 2013b). 
Parameter C in equation (2) represents the average combined parameter of a road 

segment. This model (i.e. fixed effect represented by C) does not capture the natural 
variations in the grade and rolling resistance coefficients within a road segment. 
Consequently, the prediction variance is underestimated. To overcome this shortcoming, 
a mixed effect (random slope) model, i.e.  =y C x  C , where 'sC  are i.i.d with 

2(0, )N C  is used where the estimate of σ2 can be obtained by experiments such as 

the ones presented by Sadrpour et al. (2013a) and procedures in Appendix A.1. A road 
segment is divided into smaller sub-segments =1, 2, , L   and n  measurements are 

collected from each sub-segment,  . In the mixed effect model, parameter C captures the 
average combined parameter (slope) and C  captures the deviations of each sub-segment 

slope from the average slope. The mixed effect model provides a more reasonable 
estimate of the prediction uncertainty compared to the fixed effect model; however, 
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parameter estimation for the mixed effect model is more complex computationally since 
the posterior distributions of parameters do not have a closed-form expression (see 
Appendix A.1). We assume the random effect has a negligible effect on estimation of C, 
and will use the fixed effect model to update the posterior distribution of C. The random 
effect model is used to obtain more accurate estimate of the prediction variance, and the 
model parameter, σ2, does not need to be updated with every measurement as discussed 
in Appendix A.2. 

3.2 Problem definition 

Consider a directed network G(N, A) with nodes N = {1, 2,…,n}, and edges A = {a, b, 
…}, where edges represent road segments. A road segment is defined as a sector of a 
road that has the same distribution of grade and rolling resistance (e.g. uphill/grass, 
level/paved, downhill/unpaved). The goal of a UGV operator is to traverse from a 
starting node to a final node using one of the alternative paths. Our objective is to provide 
the operator with a path that has the highest probability of reaching the destination 
without running out of energy. 

3.3 Bayesian prediction of energy requirement 

The energy requirement of road segment i, i.e. Ei where i A , can be calculated by 
integrating the instantaneous power over the time spent on the segment, i.e. 

0
=1

= ( ) ( )
nte

i
j

E P t dt P j t   (3) 

where Ei is the total energy requirement of the road segment i, and te, n and t  are the 
end time, number of measurements, and the sampling interval, respectively. Let us 
assume that the vehicle has collected k measurements from road segment i. Ei can be 
estimated by 

ˆ ˆ( )= ( ) ( )o r
i i iE k E k E k  (4) 

where ( )o
iE k  is the measured actually consumed energy up to time =t k t  and ˆ ( )r

iE k  is 

the predicted expected energy requirement for the remainder of the segment. 
According to equations (3) and (4), to estimate Ei, predictions of power for each road 

segment in the network are carried out using the vehicle model [(equation (2)]. In the 
work of Sadrpour et al. (2013a, 2013b), Bayesian recursive estimation was used to 
estimate and update the unknown parameter C of equation (2) using real-time velocity 
and power measurements and mission prior knowledge. In equation (2), the prior 
distribution of C is assumed as follows:  

0 0 0 ' 0 0 0 0 0 2 0 2 0 2
' '= ,i i i I f f CCi i i i II

C f C N               
 

  (5) 

where 0
fi

 , 0

i
  and 0

'CI
  are the means of the prior distributions of rolling resistance 

coefficient, average grade and vehicle internal resistance, respectively, for road segment 
i, and 0 2

fi
 , 0 2

i
  and 0 2

'C I
  are the corresponding variances of the prior distributions. 
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Sadrpour et al. (2013a) experimentally estimated the prior distributions of the parameters 
for various typical road surfaces using an iRobot Packbot. The chassis is propelled by 
two tracks on either side of the vehicle as shown in Figure 3. Assuming k measurements 
of velocity and power have been collected from road segment i, the posterior distribution 
of Ci in model [(equation (2)] is updated as follows (Congdon, 2003): 

    2ˆ ˆ ˆ| 1 | 1 , ( | 1)C C
i i iC k k N k k k k       (6) 

where 

    
    

    

12 2 2

2 2

12 2 2 2

ˆ ˆ| 1 = 1| 2 ( )

ˆ ˆ1| 2 1| 2 ( ) ( )

ˆ ˆ| 1 = 1| 2 ( )

C C
i i

C C
i i

C C
i i

k k k k x k

k k k k x k y k

k k k k x k







  

  

  

 

 

 

     

       

         

 

where ˆ ( | 1)C
i k k   and 2ˆ[ ( | 1)]C

i k k   represent the k-th update of the mean and variance 

of Ci, respectively. Note that for real-time prediction, the estimates of C are obtained 
from the fixed effect model. The CPU time for estimation is negligible, as is the case  
for most recursive algorithms. The computer holds the estimated posterior mean  
and variance of C from the last iteration, and updates them using the closed form 
expression (6). Using the posterior predictive distribution of y(k), we can estimate the 
distribution of energy requirement of each road segment as follows (Appendix A.2): 

      2ˆ ˆ ˆ,E E
i i iE k N k k     (7) 

where 

         
         2 22 2 2

ˆˆ ˆ ˆ= | 1

ˆˆ ˆ ˆ ˆ ˆ= | 1

E o C
i i i i i i

E C
i i i i i i

k E k t k r k W k k

k W r k k k t k t r k

  

   

  

         
 

where ˆ ( )E
i k  and 2ˆ[ ( )]E

i k  represent the k-th update of the mean and variance of ˆ
iE , 

respectively, ˆ ( )it k  and ˆ ( )ir k  are the estimated remaining time and remaining distance of 

road segment i, and i is a constant (see Appendix A.2). To obtain an estimate of ri(k), we 
assume that real-time localisation is available using Global Positioning System (GPS) or 
Simultaneous Localisation and Mapping (SLAM) techniques. 

We declare two road segments similar if they have the same prior distributions for 
rolling resistance and grade (i.e. they share the same parameter C). Measurements from 
one road segment are used to update the energy requirement distribution of all similar 
road segments in the network (Appendix A.3). The covariance of energy prediction 
between two similar road segments i and i  is given as follows (Appendix A.4):  

          22
,

ˆ ˆ ˆ ˆ= | 1E C
i i ii i k W r k r k k k      (8) 
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Figure 3 The iRobot Packbot was used to estimate the prior distributions parameters 

 

The covariance between roads that are not similar is set to zero. Using equations (7)  
and (8), we construct the joint distribution of energy requirement of road segments. The 
next step is to enumerate all paths from the start node to the destination node to construct 
the set Q = {q1, q2, …}. The computational complexity for enumerating all the paths 
from the start to end node, where all N nodes are connected, is exponential in the number 
of nodes. However, in real-world applications the computational complexity is expected 
to be much less since most nodes are not connected and many paths can be pruned 
against obviously more reliable ones. For example, Figure 6b depicts a network with 
seven nodes in which the UGV travels across the University of Michigan’s north campus 
from node 1 to node 7. Since a path is composed of one or more road segments,  
its energy requirement distribution is predicted by the sum of energy requirement 
distributions of its corresponding road segments as follows: 

ˆ ˆ( )= ( )q ij
i q j

E k E k

  (9) 

Let us denote ˆ ( )E
q j

k  and ˆ ( )E
q j

k  as the estimated mean and standard deviation of the 

path energy requirement at time k. When energy distributions are not known, ˆ ( )E
q j

k  and 

ˆ ( )E
q j

k  will be updated with each new measurement, which in turn changes the estimated 

success probability of path qj. Thus, there may be a situation that while traversing a path 
with a previously estimated high probability of success, it becomes unreliable. Moreover, 
some paths that are not initially selected may actually have higher probability of success 
and measurements may not be collected from them to update their energy distributions. 
To reduce the impact of the above issues, paths are explored with an energy-efficient 
strategy. 
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Let us define 
ˆ ( )

( )=
ˆ ( )

E
q j

q Ej
q j

T k
z k

k





 
 
 
 

 where T is the available energy prior to the 

mission. This index is commonly known as the z-score, which is used to reflect the 

reliability (i.e. probability of success) of a path indicated by  ˆ ( )= ( )q qj j
R k z k  where 

( )   is the cumulative distribution function of the standard normal distribution. The 

benefits of using the z-score is that it not only captures the reliability of a path (i.e. a path 
with a higher reliability has a higher z-score), but it is a more informative measure to 
identify the minimum energy path with high certainty. To rank paths based on their 
probability of success, we will use the z-score of the paths. 

3.4 Pruning of undesirable paths 

Pruning requires calculation of the lower and upper confidence intervals of the energy 
requirement of each path, i.e. ( )q j

LCI k , ( )q j
UCI k , using ˆ ˆ( ) ( )E E

q qj j
k z k  , where zα, 

0 1  , is the 100(1–α)th percentile of the standard normal distribution. Using a pair-
wise comparison of upper and lower confidence intervals if {  , : ( )>j j q j

q q Q LCI k   

( )}q j
UCI k


, then path qj is eliminated from Q. The road segments of the remaining paths 

may be traversed in the exploration stage. 

3.5 Exploration feasibility & exploration budget 

Prior to exploring a path, the uncertainty of energy predictions, i.e.  ˆ :E
q j

j Q  , can be 

very large. As a result, the prediction confidence intervals of energy requirements of 
many alternatives paths may overlap. The main objective of exploration is to separate 
some overlapping energy distributions. The separation is a result of reduction in the 
energy prediction uncertainty and bias from imprecise prior knowledge. 

To determine the feasibility of exploration, we need to ensure that energy spent on 
exploration does not reduce the probability of mission success below a desirable 
threshold. The exploration feasibility study provides a threshold for the maximum 
allowable exploration energy expenditure, i.e. an exploration budget. 

The exploration budget, i.e. ( )q j
Ex k , is path dependent. Not all the road segments 

will be visited during a mission. To obtain the exploration budget, we modify the 

reliability function ˆ ( )q j
R k  of qj by adding ( )q j

Ex k  to its expected exploitation energy 

requirement. For each remaining path after pruning, we determine ( )q j
Ex k  satisfying the 

following condition 
ˆ ( ) ( )

>1
ˆ ( )

E
q qj j

E
q j

T k Ex k

k






  
  
 
 

. Parameter γ is the probability of  
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mission failure after conducting both exploration and exploitation if path qj is ultimately 
selected for exploitation and is calibrated by the user. Solving the relationship for 

( )q j
Ex k  results: 

    ˆ ˆ( )< E E
q q qj j j

Ex k T k z k    (10) 

Since at this stage, any of the remaining paths may potentially be the most energy-
efficient, the exploration budget is selected so that even in the worst case scenario  
the chance of completing the mission is still 1 – γ using ( )=max{ { ( ):min qm qj j

Ex k Ex k  

},0}jq Q  . This is the smallest exploration budget found by calculating ( )q j
Ex k  for all 

paths in Q. 

3.6 Exploration budget assignment 

Suppose the vehicle is at a node from which alternative road segments emanate, i.e. an 
exploratory node. The objective of exploration budget assignment is to determine how 
many measurements to collect from each road segment emanating from an exploratory 
node. Let ,

Ex
j nq  denote the set of road segments along path qj that can be potentially 

explored when UGV is at node n. For instance, based on Figure 1b, 1,1 ={ , , , }Exq a b c d  and 

1,2 ={ , }Exq c d . 

Two competing criteria in the exploration budget assignment are: (a) the reduction in 
ˆ E

i  as a result of additional measurements; and (b) the energy consumed for collecting 

the measurements. Equation (6) provides a closed-form relation for posterior variance of 
Ci as a function of predictor x(k). ˆ E

i  is expected to decrease with more measurements 

because   2
ˆˆ ˆ( ), | 1 , ( )C

i i ir k k k t k    are all generally expected to decrease with additional 

measurements. The variance updates depend on the input x(t) (weighted drive cycle), 
which is not known a priori. However, we can still estimate the reduction of ˆ E

i  by 

simulating a drive cycle from a velocity model. In this study, we assumed that the 

velocity follows a normal distribution  2,u uu NID   , but other models such as time 

series can also be used. The expected reduction of ˆ E
i  at time k can then be estimated as 

(see Appendix A.5): 

      
 

122 22 2 2 2 2

2

ˆ( ) = | 1E C
i i i u i i i u u

i
i i i u i

u

k W d k t k k k W

d
k t t d k t





     

  


          

 
      

 

  

   (11) 

where 2[ ( )]E
i ik


 represents the simulated variance as a function of ik


, which is the 

number of simulated velocity measurements from road segment i, and di is the length of 

road segment i. An estimate for the expected cost of collecting ik


 measurements from 

road segment i at time k is obtained by 

  ˆ( )=2 | 1Ex C
i i i u iE k k k W k t    
 

 (12) 
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The multiplier 2 in equation (12) is used because we assume exploration is a round trip 
operation, and the vehicle returns to the exploratory node after exploring a road segment. 

Figure 4 shows that      = E Ex
i i i i if k k E k 
  

 is a convex function for a typical road 

segment where 0   represents the relative importance of exploration cost with respect 

to variance reduction. To assign the exploration budget to ,
Ex
j nq , we solve the following 

optimisation problem for path qj: 

,

min ( ) ( )E Ex
i i i i

Exi q j n

k E k 



 

 (13) 

   
,

subject to ,Ex
i i m i

Exi q j n

: E k Ex k k


 
 

  

The decision variable in this optimisation, ik


, is the number of measurements to collect 

from road segment i during exploration. Carrying out the optimisation for all paths that 
pass through node n, the output is the assignment of the exploration budget to the 
explorable road segments in the network. Although only the immediate road segments 
can be explored, future road segments are considered to assure that sufficient energy is 
available for future exploration. The optimisation is repeated whenever the vehicle 
reaches an exploratory node. 

Figure 4 The convex structure of ( )= ( ) ( )Ex Ef k E k k
  

 for a road segment with the following 

parameters d = 5000 m, t = 1 s, ˆ (0)=0.043C , ˆ (0)=0.3C , W = 400 N,   = 7 W, 

u  = 1.5 m/s, u  = 0.3 m/s,  = 28 W,  = 30,000. The value of k


 corresponding to 

minimal ( )f k


 is the ideal number of exploring measurements from the road segment 
(see online version for colours) 
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3.7 Exploitation 

In the exploitation stage, using the collected information during the mission execution 
and exploration, the path with the highest z-score, i.e. arg ( )max q Q qj j

z k , is selected to be 

traversed or exploited. The z-score of all the remaining paths in Q can be calculated as 
follows: 

  
,

ˆ ˆ ˆ( ) 2 | 1 ( )
( )=

ˆ ( )

E C
Exq i ii qj j n

q Ej
q j

T k k k k x k
z k

k

  


 

   


 (14) 

where ˆ( )x k  is the expected input using a weighted average of past input measurements, 

and n  is the next node to be visited along path qj. Equation (14) considers the energy to 
traverse the path as well as an estimate of the cost of future exploration for road segments 

along this path, i.e.  
,

ˆ ˆ2 ( | 1) ( )C
Ex i ii q j n

k k k x k 
 

 


. 

4 Simulated case study 

In this section, we compare our method with four other approaches for identifying an 
energy-efficient or reliable path in a network.  

1 Naive approach: This approach does not consider any model for prediction and 
relies only on mission qualitative prior knowledge. It uses intuition for comparing 
the energy requirements of alternative paths. For instance, unpaved roads require 
more energy per unit distance travelled compared to paved roads. 

2 Minimum expected energy without updating: This approach assumes the distribution 
of energy requirement of road segments cannot be updated and are known  
as a priori. Dijkstra’s algorithm can be used to identify the optimal path (Denardo, 
2003).  

3 Most reliable path without updating: The goal is to find the path with maximum 
reliability using mission prior knowledge only (Seshadri and Srinivasan, 2010).  

4 Most energy-efficient path with exploitation only: In this approach, the path with the 
highest z-score is exploited. The distribution of energy requirement of road segments 
is updated using real-time measurements, but exploration is not utilised. The vehicle 
cannot change its course once undertaking a path unless the path is pruned by real-
time measurements. If this situation does not occur, the UGV continues its course 
until it reaches another node. 

5 Most energy-efficient path with exploration and exploitation (proposed method):  
In this approach, we implement the methodology introduced in the previous section. 
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The prior distributions of road segments are obtained from experimental studies of 
Sadrpour et al. (2013a). For simulation, the power data is generated using the surrogate 
model introduced by Sadrpour et al. (2013b). The scaled aggressive EPA US06 driving 
cycle is used to represent the velocity profile of the UGV, over each segment as shown in  
Figure 5. The rolling resistance coefficients are generated using the normal distribution to 
capture the variations within the segment. The actual grade profiles were extracted from 
the Geocontext’s (2013) study. 

Figure 5 The EPA drive cycle was scaled both in time and speed magnitude in the simulation 
studies (see online version for colours) 

 

To validate the proposed approach, we demonstrate its application to a real-world 
scenario. In this scenario, the UGV traverses part of the University of Michigan’s north 
campus, as shown in Figure 6a. The goal is to reach node 7 from node 1, using one of the 
five alternative paths listed in Figure 6a. The parameters of the study are listed in  
Table 1. Although the road segments’ grade profiles were extracted from a database, it is 
assumed that this exact information is not generally available to the UGV operator. 
Figure 6b shows the schematic of the mission network with road segments’ qualitative 
prior information, i.e. roads’ average grades and surface conditions, and the length of 
each road, which are shown with numbers along each road segment. Road segment d is a 
new shortcut that the operator is not familiar with. The operator knows that the segment 
is sidewalk-(steep) uphill, and expresses their lack of knowledge by assigning a larger 
road grade prior variance (i.e. 1.5 times larger than a typical road grade variance). Also 
value of ξ shows if the operator is more interested in reducing the prediction uncertainty 
by exploration, or is more concerned about the battery remaining energy. Assigning a 
weight of ξ = 0.1 indicates that we are more interested in the reduction of uncertainty. A 
justification is that finding the minimum energy path is likely to save more energy in the 
long run, outweighing the potential energy savings from shorter exploration. 
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Figure 6 (a) The simulated case study network of alternative paths from node 1 to node 7. Five 
alternative paths have been identified as follows: Q = {q1 = {b, c, d, i}, q2 = {a, e, f}, 
q3 = {b, c, e, f}, q4 = {a, d, i}, q5 = {b, g, h, i}}. (b) The mission network schematic 
with prior information about each road segment surface condition. The number along 
each road represents the length of the road in metres (see online version for colours) 
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Table 1 Parameters of the simulated case study 

m 40 kg β 28 W ξ 0.1 

IC   N(0.22, 0.0032) σε 7 W t 1 s 

zα 2 T 85 KJ γ 0.025 

Examples of typical prior distributions of C 

Grass/flat N(0.319, 0.0432) Asphalt/flat N(0.282, 0.0442) 

Sidewalk/flat N(0.276, 0.0432) Grass/steep-uphill N(0.459, 0.0582) 

Asphalt/uphill N(0.352, 0.0442) Sidewalk/uphill N(0.346, 0.0432) 

Figure 7a represents the initial distributions of energy requirements of paths based on the 
mission prior knowledge as well as the actual energy requirement of the paths  
along with the failure threshold. Using the naive approach, it is not clear which path 
should be selected since direct comparison of alternative paths is not conclusive. Using 
approaches 2 and 3, path q2 has both the highest reliability and the lowest expected 
energy requirement. However, clearly, this path is not actually the most energy-efficient. 
Using approach 4 also, path q2 is selected, and without exploration remains unpruned 
until the vehicle reaches the destination. Figure 7b depicts the updated energy 
requirement distribution of path q2 using approach 4. While traversing road segments {e, 
f} the predicted energy requirement generally has an increasing trend. The drop in the 
predicted energy at around observation 75 is because the initial part of road segment e is 
flat while the rest of it is steep-uphill and the operator states that the road is steep-uphill. 
The increase in the predicted energy at around observation 175 is due to slightly larger 
actual grade and rolling resistance compared to their prior distribution means. 

Based on approach 5 if any of paths {q1, q2, q3, q4} is selected, the UGV will explore 
all four road segments along them. Thus, the budget assignment optimisation needs to be 
solved at node 1 and 3 only. The number of measurements from {a, b} are [4, 2]. The 
CPU time to perform the optimisation was approximately 2 s using a quad-core Intel core 
i-7 processor. After exploring road segments {a, b}, path q2 still has the highest z-score. 
The UGV then exploits road segment a until it reaches node 3. The vehicle then explores 
the alternative road segments {e, d} and collects [3, 4] measurements from each, 
respectively. The z-score associated with each path after the second exploration is shown 
in Figure 8a. Clearly, from Figure 7a, path q4 = {a, d, i}, which actually has the least 
energy requirements (see Figure 6a for actual energy requirements), should be selected. 
Figure 8b depicts the predicted energy requirement of path q4. The change in the decision 
from path q2 to path q4 after exploration is due to a drop in the predicted energy 
requirement of road segment d, shown with a circle in Figure 8b, which initially 
perceived to have an average grade of 6 degrees compared to an actual average grade of 
around 3 degrees uphill. 

This case study shows the effectiveness and flexibility of the proposed approach. 
Operators can express their lack of knowledge of road surface conditions with large prior 
variances. These road segments will be assigned larger exploration budgets when solving 
the budget allocation optimisation problem. Also, we noticed that when generating 
alternative paths for different real-world scenarios, many alternative paths can be 
intuitively eliminated using the naive approach. Consequently, the number of alternative 
paths requiring exploration does not necessarily increase exponentially with the number 
of nodes and road segments. 
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Figure 7 (a) The initial energy requirement distribution of paths based on mission prior 
knowledge. The distributions are represented by their mean and confidence intervals. 
The actual energy requirement of each path, i.e. Eqi, is shown with a dashed line, and 
the energy failure threshold, i.e. T, is shown with a solid line. (b) The energy 
requirement of path q2 vs. observations from this path using approach 4. The numbered 
circles correspond to the nodes in the network. This path cannot be pruned against the 
alternative paths and is traversed to reach to node 7 (see online version for colours) 
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Figure 8 (a) Updated z-score of each path after exploring road segments {e, d}. The exploration 
stage requires a total of 13 measurements. Path q4 = {a, d, i} has the highest z-score and 
is subsequently selected to be traversed. Note that for example, path q5 can be clearly 
eliminated at this stage due to very low z-score. (b) Path q4 energy distribution updates 
using approach 5 (see online version for colours) 
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5 Concluding remarks 

This paper proposes dynamic energy-efficient path planning for a UGV while minimising 
the probability of depleting the on-board energy during mission execution. Mission prior 
knowledge and real-time sensory information, i.e. instantaneous power consumption and 
velocity, are used to update the distribution of the predicted energy requirements of 
alternative paths through two decision-making stages. The first is an exploration stage, 
where prior information may not be sufficiently accurate, and an energy-efficient 
exploration strategy is used to reduce the uncertainty of the predicted energy 
requirements of the feasible paths. Also, paths that are unlikely to be the most reliable are 
removed through pruning. The second stage, i.e. exploitation, involves the UGV 
traversing the most reliable path based on the results of the first stage. Our simulated case 
study shows that the proposed approach outperforms several other potential offline and 
online path planning methods. Future research will focus on experimental validation 
studies and ways to reduce the computational complexity of the proposed approach for 
larger networks. 
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Appendix 

For ease of notation, we drop the index i that indicates the road segment whenever 
possible in Appendix. 

A.1 Parameter estimation for random slope 

Let us denote ' =C C C  where 2(0, )N C  and thus 2' ( , )N C C . The estimation 

involves finding the posterior distribution of 'C , C, and σ2. The joint distribution of the 

data and parameters is proportional to 

      

       

2 2
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         
  
       
 

    



   


C
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 (A1) 

where    2| ' , , ' | ,i iy x C     C C , and  | ,C CC    are normal distributions, and 

 2 | ,     (i.e. the prior distribution of σ2) is an inverse-gamma distribution, and 

,i ix y   are the measured input and output from sub-segment  . Parameters ,   can be 

chosen so that the mean and variance of prior distribution matches an estimated value 
obtained through offline experiments. 

Since the posterior distribution does not have a closed-form solution, we will use 
Gibbs sampling to draw samples from the full conditional distributions of parameters. Let 
us assume that data from =1, , j   sub-segments within the road segment have been 

collected. The full conditional distribution of 'C  and C are as follows (Hoff, 2009): 

 
1 1

2 2 2 2 2 2 2 2

=1 =1 =1

' |

,
n n n

i i i i
i i i

N x C x y x  



     
 

     



      
                    

  



  

   

C


 (A2) 

where   indicates that the distribution is conditioned on all the remaining parameters. 

 

   2 2 21 1
2 2 2

=1

|

' ,
j

C C C C

C

N j j



      
  

 
  



  
     

  
 


 C
 (A3) 

And, the full conditional distribution of σ2 is as follows:  

   22

=1

| Inverse-Gamma /2, , ' /2
j

j C   
     

 
 

C  (A4) 

The CPU time to perform the Gibbs sampling varied between 3 and 12 s using a quad-
core Intel core i-7 processor. The computation time depends on: (a) number of draws in 
the Gibbs sampling; (b) size of the sub-segments; and (c) size of the road.  
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A.2 Predictive distribution of output 

Suppose the vehicle has collected k measurements from a road segment, and 

 ˆ | , 1x k j k j    is the expected input at time k + j, which is estimated by the weighted 

average of velocity measurements up to time k. The mean and variance of the j-step-
ahead prediction of output are estimated as follows:  

       
   

ˆ| , =0 | , | , | 1 ,{ } =0

ˆ ˆ= | 1 |C

E y k j k E E y k j k x k j k C k k

k k x k j k

            
 

  C C
 (A5) 

We use the fixed effect model to estimate the expected energy requirement of a road 
segment in real-time. The variance of prediction for j step-ahead prediction of power, 
which is assumed to belong to sub-segment  , at k is calculated as follows: 

    
     

   22 2 2

ˆ| = ( | , ( ), ( | 1),

ˆ| , | , | 1 ,

ˆ ˆ( | 1) | |C

var y k j k E var y k j k x k j C k k

var E y k j k x k j k C k k

k k E k x k j k  

     

     

          





C

C  (A6) 

where ( | 1)C k k  is estimated in real-time using the fixed effect model and 2[ | ]E k  is 

posterior mean of σ2, which is estimated less frequently using the mixed effect model. 
The covariance of prediction error of j and j  step-ahead predictions if both belong 

to the same sub-segment   is calculated as follows: 

    
    

    
     

      2 2

ˆ( | ), ( | ) = ( | , ( ), ( | 1), ,

ˆ| , | , | 1 , )

ˆ| , | , | 1 , ,

ˆ| , ( | , | 1 ,

ˆ ˆ ˆ| 1 | | |C

cov y k j k y k j k E cov y k j k x k j C k k

y k j k x k j k C k k

cov E y k j k x k j k C k k

E y k j k x k i k C k k

k k E k x k j k x k j k 

    

    

     

   

          









C

C

C

C

 (A7) 

if j and j  do not belong to the same sub-segment their covariance is estimated by  

          2
ˆ ˆ ˆ| , | = | 1 | |Ccov y k j k y k j k k k x k j k x k j k         (A8) 

Since at k, ˆ ˆ( )= ( )x k j x k j   the last term in the equation above becomes  ˆ ˆ[ | 1C k k x   

  2| ]k j k . In the work of Sadrpour et al. (2012), we showed power consumption can be 

estimated by    | |P k j k y k j k     . The term ˆ ( )rE k  in equation (4) is estimated as 

follows:  

 
=1

ˆ ( ) |
n

r

j

E k P k j k t    (A9) 
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where n is the expected number of remaining measurements from the road segment and 
is estimated by ˆ ˆ( )/( ( ) )r k u k t  where ˆ( )u k  is the weighted average of past velocity 

measurements. Let us assume the vehicle is at sub-segment  , and let r  denote the 

remaining distance from sub-segment  . Using equation (A5)–(A8), the expected value 

and variance of ˆ ( )rE k  are as follows: 

   
 

ˆ ˆ ˆ ˆ ˆ( ) = ( | 1) ( ) ( )/( ( ) )

ˆˆ ˆ= ( ) | 1 ( )

r C

C

E E k k k x k j r k u k t t

r k W k k t k

 

 

       
 

 (A10) 

     

 

22 2 2
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2 2 2 2

=

ˆ ˆ( ) = | = ( ) | 1

ˆ ˆ |

n
r C

j

L

var E k var P k j k t W r k k k

t k t W E k r



 


 
      

 

     



 
 

 (A11) 

If we assume that each sub-segment has roughly an equal length rc, we can simplify the 

term 2 2 |W E k    2

=

L
r
  

 to  2 2 ˆ| cW E k r r k    where 2 2 | cW E k r    is a constant 

denoted by . 

A.3 Posterior updating using similarities 

Consider the following distribution for combined parameters of two road segments, ,i i , 

 , ( , )i iC C N   . Using realisations from Ci, the distribution of 
iC 

 can be updated 

by the conditional distribution  |i iC C  . However, realisations of combined parameter 

iC   are not available. The only measurable quantities are the input and output of model 

[(equation (2)]. Let us assume k measurements are collected from road segment i denoted 
by obsi. The distribution of Ci is updated as follows: 

     | = | |i i i i i i iC obs C C C obs dC     (A12) 

where  |i iC obs  is the posterior distribution of Ci. While this updating scheme can be 

applied to any multivariate normal distribution, in our case, we assume that two similar 
roads share the same combined parameter having a correlation of one. Thus, any 
realisation of Ci from  |i iC obs  is a realisation from Ci, and based on equation (A12), 

the combined parameter of both road segments can be simultaneously updated using 
measurements from one of them.  

A.4 Covariance of energy requirement of road segments 

Two road segments are similar if they share the same C. Let us assume k measurements 
have been collected from road segment i and the vehicle has not yet started to traverse 
similar road segment i . Two predictions from road segments i and i  has a covariance  
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of  2 2ˆ ˆ( | 1) |C k k x k j k    . Thus, covariance of energy prediction can be calculated 

using the derivations from Section A.2 as follows:  

   

       

=1 =1

2 22 2 2

| , |

ˆ ˆ ˆ ˆ ˆ| 1 | = ( ) ( ) | 1

n k ni i

j j

C C
i i i i

cov y k j k t y j k t

n k n k k x k j k t W r k r k k k 

 



 

 
    

 

           

 
 (A13) 

where ,i in n   are the number of measurements from road segments i and i , respectively. 

A.5 Estimating the reduction in uncertainty 

For estimating the reduction of energy prediction variance, we use the prediction 
variance relation in equation (7). We assume based on prior knowledge of driving style, 

the velocity follows a normal distribution  2,u uu NID   . The posterior distribution of 

C after k measurements is estimated by        12 2 2 2

=1
ˆ ˆ= 0

kC C

i
k x i  

          .  

The expected value of  2 2 2 2

=1
( ) =

k

u ui
E x i kW      . The two other parameters of 

equation (7) ˆ( )r k  and ˆ( )t k  are estimated by  ud k t   and  / ud k t   , 

respectively. Replacing these estimates in equation (7), we obtain equation (11). 


