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Abstract. In batch manufacturing processes, the total process variation is generally decomposed into batch-
by-batch variation and within-batch variation. Since different variation components may be caused by different
sources, separation, testing, and estimation of each variance component are essential to the process improvement.
Most of the previous SPC research emphasized reducing variations due to assignable causes by implementing
control charts for process monitoring. Different from this focus, this article aims to analyze and reduce inherent
natural process variations by applying the ANOVA method. The key issue of using the ANOVA method is how
to develop appropriate statistical models for all variation components of interest. The article provides a generic
framework for decomposition of three typical variation components in batch manufacturing processes. For the
purpose of variation root causes diagnosis, the corresponding linear contrasts are defined to represent the possible
site variation patterns and the statistical nested effect models are developed accordingly. The article shows that the
use of a full factor decomposition model can expedite the determination of the number of nested effect models and
the model structure. Finally, an example is given for the variation reduction in the screening conductive gridline
printing process for solar battery fabrication.
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1. Introduction

Batch manufacturing processes have been widely used in various manufacturing processes,
such as wafer fabrication, integrated circuit fabrication, and gridline printing process in
solar battery fabrication. In a batch manufacturing process, products are produced batch-
by-batch. Thus, total process variations are generally divided into two categories: One is
batch-by-batch variation because of the process variability among different batches, and
the other is within-batch variation because of the process variability within a batch. Since
different variations are usually caused by different root causes, separation and estimation
of each variation component is very critical for determining an effective variation reduction
strategy in a batch manufacturing process.

Recently, lot of research has been conducted for batch manufacturing process monitoring
with the focus on control chart implementation. The emphasized issue is how to develop
effective control limits of control charts for monitoring the process condition change, that
is, detecting the change of batch-by-batch mean and within-batch variability. The early
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approach of the accomplishments is to treat the subgroup statistics within a batch as indi-
vidual observations. The standard individual control charts are developed on these statistics
to monitor batch-by-batch process mean change (Palm, 1992; Porter and Caulcutt, 1992;
Wetherill and Brown, 1991; Wheeler and Chambers, 1992). More complicated approaches
are to develop control charts to monitor the separated variance components. The initial re-
view of this approach is studied by Woodall and Thomas (1995). Recently, Yashchin (1994)
developed CUSUM control charts to monitor the variance components and applied it to the
integrated circuit fabrication, in which the variance components representing the lot-to-lot
variation and wafer-to-wafer variation, are modeled by the nested random effect models.
Roes and Does (1995) developed the monitoring control charts for the silicon wafer man-
ufacturing process, in which a mix-effect model is used to include the fixed effects of the
grinding wafer positions in addition to the nested random effect of process runs. In addition,
Runger and Fowler (1998) further developed run-to-run control charts with contrasts for
semiconductor wafer manufacturing processes. In this approach, the monitored contrasts
are formalized based on the engineering knowledge of the site patterns of the potential
assignable causes. So, the out-of-control points in the contrast control chart are able to link
to the conditions of monitored sites. For multidimensional measurements, multivariate con-
trol charts were developed based on PCA (principal component analysis) and PLS (partial
least squares) for online monitoring of polymerization reactor process, a stamping process,
and a filament extrusion process (Nomikos and MacGregor, 1995; Jin and Shi, 2000, Wurl,
Albin, and Shiffer, 2001).

In all above research, the main purpose is to develop effective control charts for detect-
ing process changes. The control limits are determined with the inclusion of the inevitable
systematic variability as the inherent natural variability. In fact, prior to the control chart
implementation, the first effort is needed in practice to analyze and reduce those initial
variation components as much as possible. Then, it is reasonable to justify which sys-
tematic variance components have to be included in the control chart development if they
eventually cannot be eliminated due to the process constraints. For example, in a wafer
manufacturing process, the produced product quality is generally varied over different sites
of a silicon wafer. If the sites relating to the nonconforming chips are relatively consistent
among wafers over different batches, the first effort should devote to elimination of such a
variation component as much as possible. Then, it can determine whether it is still signif-
icant and needed to be included as an inherent system variation in the implementation of
monitoring control charts. Also, in the example of the screening conductive gridline print-
ing process discussed in Section 3 of the article, the initial setup error of tabletop surface
of a Fineline Press machine often leads to an inherent uniformity on the printed gridlines
over the printing area. It is recommended to first devote the efforts to reduce or avoid such
systematic inherent errors rather than simply accept it as the inherent process variation in the
control chart development to avoid getting it worse. So, different from the previous research
focus, this article aims to develop a general variation decomposition and analysis method-
ology for modeling and estimation of inherent variance components in batch manufacturing
processes.

The proposed variation modeling and analysis method in the article is based on the
general methodology of analysis of variance (ANOVA) method. The critical issue
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of using the ANOVA method is how to determine appropriate statistical models to
describe all decomposed variation components of interest. In the article, a general vari-
ation decomposition framework is presented based on the statistical nested effect mod-
els for testing and estimation of typical variance components in batch manufacturing
processes. The implementation and the effectiveness of the proposed methodology are
illustrated in the screening conductive gridline printing process for solar battery
fabrication.

The article is organized as follows: after the introduction in Section 1, a general varia-
tion decomposition framework of total process variations is provided in Section 2 for all
possible nested relationship of variance components of interest. Section 3 gives a brief de-
scription of the screening conductive gridline printing process in solar battery fabrication,
which will be used as an example in the methodology development. Section 4 discusses
the general modeling and analysis procedures using the ANOVA method. The implemen-
tation and the effectiveness of the developed methodology are illustrated in Section 5
with a real case study in the gridline printing process. Finally, the article is concluded in
Section 6.

2. General decomposition framework of total process variations

As is shown in the literature (Woodall and Thomas, 1995; Yashchin, 1994; Roes and Does,
1995; Runger and Fowler, 1998), the process variations in batch manufacturing processes
can be generally classified into three types of variations due to the change of three factors or
variables, that is, (a) Factor batch leading to batch-by-batch variation due to the difference
of batches; (b) Factor sample inducing sample-by-sample variation representing the dif-
ference among samples; and (c) Factor site representing the nonuniformity of site-by-site
variations. In practice, depending on the potential root causes of each variation component
in a particular application, the change of one factor (such as Factor A) is usually occurred
within another factor (such as Factor B). In the analysis of variance (ANOVA), Factor A
is nested by Factor B. For example, in a wafer fabrication process, the wafer-by-wafer
(i.e., sample-by-sample) variation is usually analyzed within a given batch. Thus, factor
sample is nested by factor batch. Similarly, in a screening conductive gridline printing pro-
cess discussed in Section 3, the variance component of factor site is studied within factor
run. In this case, factor site is nested by factor batch. Therefore, different nested models
should be carefully constructed to appropriately represent those corresponding variance
components.

In the article, a general decomposition framework of total process variations is pro-
vided in Figure 1, where Layer 1 shows the process variation decomposed by each of
three factors, and Layer 2 provides a general list of how each factor’s variation is nested
by other two factors. Furthermore, to expedite the root cause diagnosis of inherent site
variation, the site-by-site variation can be further decomposed into different contrasts
defined by linear combinations of site measurements, which is shown in the bottom of
Layer 1 in Figure 1. The linear relationships among sites in a contrast should be well
defined based on the particular process knowledge such that each contrast corresponds
to some meaningful variation patterns of known root causes. When this contrast
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Figure 1. General decomposition of variance components.

decomposition of the total site-by-site variation is performed, the variance components,
as defined in Layer 2, should be further decomposed under each site contrast rather than
the total site variation as shown in Layer 3 of Figure 1. The detailed discussion of this
decomposition will be discussed in Section 4 in the screening conductive gridline printing
process.

It should be noted that for a particular application, not all listed nest factors necessarily
have a clear physical interpretation. The determination of the nest components from this
general list is essentially needed for a given application, which usually relies on the process
engineering knowledge of the interested variance components and the existence of the
possible root causes.

In general, only one statistical model may not be sufficient to describe all interested
variation components in Figure 1. So, there is a need to justify how many models are
required and what statistical models are adequate for modeling of the selected subset of
variance components. In the previous research literatures (Woodall and Thomas, 1995;
Yashchin, 1994; Roes and Does, 1995; Runger and Fowler, 1998), there is no discus-
sion on how to use a set of statistical models to fit various decompositions of variance
component, because a single statistical model was sufficient to describe the selected
monitoring variance components in their applications. In general, the selection of the
interested factors (or nested factors) and the determination of the needed statistical
models are related to the variation characteristics of a particular application process.
As an example, a screening conductive gridline printing process will be used in the
article to illustrate the details of the methodology development and implementation
procedures.
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Figure 2. Measurement locations on a printed panel.

3. Overview of screening conductive gridline printing process

The screening conductive gridline printing process is used to print conductive gridlines on
the solar panel to form an electrical circuit, which is a very critical operation in solar battery
fabrication. The printing operation is performed panel by panel and each panel is called a
sample. Generally, the printing tools of a rubber screen and squeegee used in a Fineline
Press machine need to be taken out for cleaning after finishing each production run, and
then set up again for the next production run. Thus, such a production run cycle under the
same tool setup is considered as one-batch production.

In the screening conductive gridline printing process, the resistance of printed gridlines
is a major concern of the product quality because it significantly affects the solar panel
efficiency. It is known that the gridline resistance is affected by the width and height of
the printed gridlines. So the spatial uniformity of the width and the height of the printed
gridlines is a critical issue for reducing solar panel efficiency variation due to the printing
operation. For inspection of the uniformity, four resistance measurements (M1, M2, M3,
M4) are taken at four corners of each panel as shown in Figure 2. The variation among
these four measurement positions called sites is used to represent the spatial uniformity of
site-by-site variation.

3.1. Description of process variables

At the beginning of every panel printing, each panel is put on the tabletop of the Fineline
Press machine, and the air suction pores distributed on the machine tabletop are used to
hold the panel during printing operation. The squeegee moves from front to back to press
conductive ink through the rubber screen to print gridlines on the panel. Then, the flood bar
moves from back to front to spread ink over the rubber screen ready for printing next panel.
The important process variables in the printing process are classified as: (1) tool conditions
(screen’s tension and missing lines, squeegee’s edge shape and hardness), (2) tool setup
position (the gap and relative orientation angle between the squeegee and the rubber screen,
the alignment of the rubber screen and the squeegee relative to the machine tabletop), and
(3) conductive ink material (ink viscosity and composition). Table 1 provides a summary
of these process variables and whether they have an effect on each of process variation
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Table 1. Effect of process variables on potential variations.

Batch-by-batch Site-by-site Sample-by-sample variation for a given
variation variation site within a run

Tool condition Yes Yes Ignore tool degradation within a run

Tool setup Yes Yes Assume tool position fixed within a run

Conductive ink material Yes Ignore ink variation Assume no new ink added within a run
within a run

components. Since the tool condition degradation is generally very slow, it is reasonable to
assume the tool condition is not changed within one production run.

3.2. Selection of the interested variation components

From Table 1, it can be seen that the batch-by-batch variation and site-by-site variation
are of the major interest for process variation reduction because they are affected by many
assignable process variables or working conditions. The sample-by-sample variation is
considered as the inherent process variation especially sampling at a given site and within
a production run. Thus, from the general list of variation decomposition in Figure 1, factor
batch (Factor A) and factor site (Factor B) at Layer 1 are considered as the main factors
contributing to the process variations. At Layer 2, the possible nested factors can be either
A(B) or B(A). Based on the possible existence of potential root causes, three most interested
variation components are selected which are contributed by Factor A as well as the nested
Factors A(B) and B(A). The details of each variation component and the associated root
causes are discussed as follows:

1. Batch-by-batch variation due to the variability of the average of four sites over different
runs (Variation Q1 due to Factor A): It is mainly represented by the process variability
over different batches, such as ink materials, different setup positions of the squeegee
orientation angle and the distance of the rubber screen from the printing machine tabletop,
and the tool condition change due to squeegee wear and the tension loosing of the rubber
screen surface. The process improvement strategy should enhance the inspection of ink
property, tool setup, and tool condition at the beginning of each run.

2. Batch-by-batch variation at any of four sites over different runs (Variation Q2 due to the
nested factor A(B)): It reflects the repeatability of tool setup position at each site over
different runs. So, Q2 is caused by different tool setup errors and/or nonuniform tool
degradation at each site over different runs. Thus, the reduction of this variation should
reduce operator-induced variability and tool setup variability over different runs.

3. Site-by-site variation within a production run (Variation Q3 due to the nested factor
B(A)): For each production run, the site-by-site variation is mainly caused by the align-
ment accuracy of the squeegee position relative to the screen positions, and the screen
orientation relative to the printing machine tabletop. The strategy for reducing such a
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within-run site-by-site variation is to improve the tool setup inspection accuracy at each
site and check tool performance uniformity over the printing area.

For above listed three variation components of interest, the ANOVA method will be
applied in the following sections to model, test, and estimate these variation components.
Then, the effective process improvement efforts can be made accordingly to remove or
reduce the corresponding significant variation root causes.

4. Variance component analysis using ANOVA

In the article, yi jk is used to denote a measurement taken at site j( j = 1, . . . , b) of panel
sample k(k = 1, . . . , n) within batch i (i = 1, . . . , a). In the example of the screening
conductive gridline printing process, four measurement sites are fixed for each panel sample,
that is, b = 4; three panel samples are taken from each batch at each site, that is, n = 3; and
six batches of production data (i.e. a = 6) are selected for initial evaluation of the process
variation. The corresponding sum of squares of these three variations (Q1, Q2, and Q3) are
represented by

SS(Q1) = SSA = bn
a∑

i=1

(ȳi.. − ȳ...)
2 (1)

SS(Q2) = SSA(B) = n
a∑

i=1

b∑
j=1

(ȳi j. − ȳ. j.)
2 (2)

SS(Q3) = SSB(A) = n
a∑

i=1

b∑
j=1

(ȳi j. − ȳi..)
2, (3)

Where yi.. = ∑b
j=1

∑n
k=1 yi jk , y... = ∑a

i=1

∑b
j=1

∑n
k=1 yi jk , yi j. = ∑n

k=1 yi jk , y. j. =∑a
i=1

∑n
k=1 yi jk , ȳi.. = yi../nb, ȳ... = y.../abn, ȳi j. = yi j./n, ȳ. j. = y. j./an. Factor A is a

random factor with a levels and Factor B is a fixed factor with b levels.
The critical issue of using the ANOVA method is to develop appropriate linear statistical

models for the decomposed variance components of interest. For analyzing the interested
sum of squares of SSA(B) and SSB(A) induced by those two nested factors A(B) and B(A),
two different nested effect decomposition models are needed and discussed in the following
subsections. Section 4.1 will present those two statistical nested models. Section 4.2 gives
the statistical testing and estimation of each variance components. To perform root cause
determination of the site variation, a further decomposition of the site variation by three
linear contrasts is presented in details in Section 4.3.

4.1. Statistical modeling of the interested variation components

A linear two-stage nested design model can be used to represent the interested variance
components Q1 and Q3 induced by Factor batch (A) and the nested Factor site (B) within
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the batch as follows:

yi jk = µ + τi + β j(i) + ε(i j)k




i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , n

, (4)

where µ is the overall mean of all factors at all levels, τi is the i th level effect of Factor A,
β j(i) is the j th level effect of Factor B nested under the i th level of Factor A, and εi jk is a
random model error with εi jk ∼ NID(0, σ 2). The variance σ 2 is assumed to be constant and
independent of all levels of other factors. Since Factor A is a random factor, it is assumed
τi ∼ NID(0, σ 2

τ ). Although Factor B is a fixed factor, the nested factor of B-within-A is a
random factor. So, it is assumed that β j(i) ∼ NID(0, σ 2

β(τ )). From model (4), the total sum
of squares can be decomposed as follows called Decomposition I in the article:

SST = SS(Q1) + SS(Q3) + SSE = SSA + SSB(A) + SSE (5)

Similarly, a different linear two-stage nested design model is needed to represent the
interested sum of squares of Q2 induced by Factor batch (A) nested by Factor site (B) as
follows:

yi jk = µ + τi( j) + β j + ε(i j)k




i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , n

(6)

Now, Factor A is random, the nested factor of A-within-B is still random, thus, τi( j) ∼
NID(0, σ 2

τ (β)). However, Factor B is a fixed factor satisfying the condition of
∑b

j=1 β j = 0.
In this case, the total sum of squares is decomposed as follows called Decomposition II in
the article.

SST = SSB + SS(Q2) + SSE = SSB + SSA(B) + SSE (7)

4.2. Statistical testing and estimation of the variance components

In ANOVA analysis, it needs to construct appropriate test statistics to check the significant
level of each factor. The F-test statistics are obtained as equations ((8)–(10)) based on
the relationship of the expected mean squares of the variance components (Montegomery,
1997),

MSA

MSE
∼ F(d f A, d fE ) (8)

MSA(B)

MSE
∼ F

(
d f A(B),d fE

)
(9)

MSB(A)

MSE
∼ F

(
d fB(A), d fE

)
, (10)



ANOVA METHOD IN BATCH MANUFACTURING 175

where MSA, MSA(B), and MSB(A) are the mean squares of the corresponding factors described
by each subscript. d f A, d f A(B), and d fB(A) are the corresponding degrees of the freedom.
The detailed analysis of each item is shown in the expected mean squares tables (Tables 8
and 10) and the analysis of variance tables (Tables 9 and 10) in the Appendix. The estimates
of these variance components are also obtained as

σ̂ 2
Q1

= σ̂ 2
τ = (MSA − MSE )/bn (11)

σ̂ 2
Q2

= σ̂ 2
τ (β) = (

MSA(B) − MSE
)/

n (12)

σ̂ 2
Q3

= σ̂ 2
β(τ ) = (

MSB(A) − MSE
)/

n (13)

4.3. Site variability decomposition and diagnosis based on linear contrasts

Both variation components of Q2 and Q3 are related to the site variability. If such variation
components are significant, removal or reducing of the associated root causes are generally
desired. From Table 1, it can be seen that the site variability is mainly related to the tool
conditions and tool setups. Thus, identification of site variation patterns can expedite the
diagnosis of variation root causes for process improvement.

Based on the engineering knowledge of potential fault patterns in the screening con-
ductive gridline printing process, the total spatial variation among four sites can be fur-
ther decomposed into three typical variation patterns, which are reflected by the differ-
ences of the front and back site (between M1&M4 and M2&M3), the left and right site
(between M1&M2 and M3&M4), and the diagonals (between M1&M3 and M2&M4) as
shown in Figure 2. The statistical test and the estimates of these three variation patterns
can provide a useful guideline on how to adjust the tool position to reduce tool setup
errors.

For the purpose of analyzing the contribution of each variation pattern, three linear
contrasts of BFB, BLR, and B D are defined to represent each contrast effect of front-back
sites, left-right sites, and the diagonal respectively, that is,

βFB
ik = (yi1k + yi4k − yi2k − yi3k)/2 (14)

βLR
ik = (yi1k + yi2k − yi3k − yi4k)/2 (15)

βD
ik = (yi1k + yi3k − yi2k − yi4k)/2 (16)

The constant 2 in the denominator is used to normalize the effect of each contrast. It
is known that two contrasts with linear coefficients {ci } and {di } are called orthogonal
contrasts if the condition of

∑b
i=1 ci d j = 0 is satisfied. From equations (14)-(16), it can

be seen that the linear coefficients of those three contrasts βFB
ik , βLR

ik , and βD
ik are [0.5

−0.5 −0.5 0.5], [0.5 0.5 −0.5 −0.5], and [0.5 −0.5 0.5 −0.5], respectively. So, it can be
proved that the defined three contrasts are orthogonal to each other. The following analysis
will show how to develop appropriate statistical models to meet the need of analyzing these
contrast variations for decomposition I of equation (5) and decomposition II of equation (7),
respectively.
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4.3.1. Analysis of contrast variance components for decomposition I

4.3.1.1. Variation decomposition I represented by linear contrasts. It is known that the
total sum of squares SST can be represented by

SST =
a∑

i=1

n∑
k=1

[(yi1k − ȳ...)
2 + (yi2k − ȳ...)

2 + (yi3k − ȳ...)
2 + (yi4k − ȳ...)

2] (17)

It can be shown that

yi1k − ȳ... = (ȳi.. − ȳ...) +
(

β̄FB
i. + β̄LR

i. + β̄D
i.

2

)
+ (yi1k − ȳi1.) (18)

So, the sum of squares of equation (18) is:

a∑
i=1

n∑
k=1

(yi1k − ȳ...)
2 = n

a∑
i=1

(ȳi.. − ȳ...)
2+n

4

a∑
i=1

[(
β̄FB

i.

)2+(
β̄LR

i.

)2 + (
β̄D

i.

)2
]

+
a∑

i=1

n∑
k=1

(yi1k − ȳi1.)
2 (19)

The derivation from equation (18) to equation (19) utilizes the fact that all four items of ȳi..,
β̄FB

i. , β̄LR
i. , and β̄D

i. are orthogonal to each other.
Similarly, for other three variation components of equation (17), it can be obtained that

yi2k − ȳ... = (ȳi.. − ȳ...) + −β̄FB
i. + β̄LR

i. − β̄D
i.

2
+ yi2k − ȳi2. (20)

yi3k − ȳ... = (ȳi.. − ȳ...) + −β̄FB
i. + β̄LR

i. + β̄D
i.

2
+ yi3k − ȳi3. (21)

yi4k − ȳ... = (ȳi.. − ȳ...) + β̄FB
i. − β̄LR

i. − β̄D
i.

2
+ yi4k − ȳi4. (22)

Thus, the total sum of squares of equation (17) can be represented in terms of the nested
contrasts as

SST = 4n
a∑

i=1

(ȳi.. − ȳ...)
2+n

a∑
i=1

[(
β̄FB

i.

)2+(
β̄LR

i.

)2 + (
β̄D

i.

)2]

+
a∑

i=1

4∑
j=1

n∑
k=1

(yi jk − ȳi j.)
2 = SSA + SSBFB(A) + SSBLR(A) + SSB D (A) + SSE

(23)

It concludes that the original total site variation nested by Factor run are decomposed into
three orthogonal contrast variations nested by Factor run, that is, SSB(A) = SSBFB(A) +
SSBLR(A) + SSB D (A). This result shows that for a factor with level b, its total variation nested
by another factor can still be decomposed into the variations of b − 1 orthogonal contrasts
under the same nest factor.
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4.3.1.2. Representation of contrast effects by factor effects. In fact, three contrasts defined
above can also be further represented by two factors V and W with two fixed levels, which
are defined as V = 1 representing the front site, V = −1 representing the back site; W = 1
representing the left site, and W = −1 representing the right site, that is,

νi1k = (yi1k + yi4k)/
√

2, νi2k = (yi2k + yi3k)/
√

2 (24)

ωi1k = (yi1k + yi2k)/
√

2, ωi2k = (yi3k + yi4k)/
√

2 (25)

√
2 is used to normalize each factor effect. The equivalence of the defined new factors to the

contrasts can be seen by the following proof through comparing the results in equation (29)
with that in equation (23).

SSV (A) = n
a∑

i=1

[(ν̄i1. − ν̄i..)
2 + (ν̄i2. − ν̄i..)

2]

= n
a∑

i=1

[(
ȳi1. + ȳi4.√

2
− ȳi1. + ȳi2. + ȳi3. + ȳi4.

2
√

2

)2

(26)

+
(

ȳi2. + ȳi3.√
2

− ȳi1. + ȳi2. + ȳi3. + ȳi4.

2
√

2

)2]

= n
a∑

i=1

(
ȳi1. + ȳi4. − ȳi2. − ȳi3.

2

)2

= SSBFB(A)

Similarly, the sum of squares of the nested factor W as well as the nested interaction of
Factor V and Factor W are

SSW (A) = n
a∑

i=1

[(
ȳi1. + ȳi2.√

2
− ȳi1. + ȳi2. + ȳi3. + ȳi4.

2
√

2

)2

+
(

ȳi3. + ȳi4.√
2

− ȳi1. + ȳi2. + ȳi3. + ȳi4.

2
√

2

)2]
(27)

SSV ×W (A) = n
a∑

i=1

[(
ȳi1. + ȳi3.√

2
− ȳi1. + ȳi2. + ȳi3. + ȳi4.

2
√

2

)2

+
(

ȳi2. + ȳi4.√
2

− ȳi1. + ȳi2. + ȳi3. + ȳi4.

2
√

2

)2]
(28)

It shows that SSW (A) = SSL R(A) and SS[V ×W ](A) = SSD(A). Thus, equation (23) can be repre-
sented as

SST = SSA + SSV (A) + SSW (A) + SS[V ×W ](A) + SSE (29)

Remark. An important conclusion is that the total process variation is contributed by three
factors as random Factor A with the level equal to the number of runs and two fixed factors
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of V and W with the level equal to two. The main effects of Factors V and W as well as
the effect of their interaction V × W are equivalent to the contrast effects of BFB, BLR,
and B D , respectively. This conclusion can be directly used to expedite the development of
statistical model for the contrast variations under decomposition II, which is discussed in
Section 4.3.2.

4.3.1.3. Statistical testing and estimation of the decomposed site variance components.
Statistical modeling of the decomposition of equation (29) can be represented by an equiv-
alent model of the two-stage nested design of three factors as

yi jk = µ + τi + νp(i) + ωq(i) + (νω)pq(i) + ε(i pq)k




i = 1, . . . , a

p, q = 1, 2

k = 1, . . . , n

(30)

In the model, τi is the effect of run i . νp(i) is the effect of Factor V at level p nested by
Factor A at level i,that is, the effect of the front-back contrast within run i . Similarly, ωq(i) is
the effect of the left-right contrast within run i , (νω)pq(i) is the effect of the diagonal contrast
within run i . So, the main effect of τi is the same as the original model of equation (4),
the nested effects of νp(i), ωq(i), and (νω)pq(i) represent the within-run variations induced
by different site variation patterns. Now, using the decomposition model of equation (30),
the F-tests of the nested contrast factors are developed in equations (31)–(33) based on the
expected mean squares table (Table 12) and the analysis of variance table (Table 13) in the
Appendix.

MSV (A)

MSE
∼ F(a, d fE ) (31)

MSW (A)

MSE
∼ F(a, d fE ) (32)

MS[V ×W ](A)

MSE
∼ F(a, d fE ) (33)

The corresponding nested variance components are estimated by

σ̂ 2
QV

3
= σ̂ 2

ν(τ ) = (
MSV (A) − MSE

)/
2n (34)

σ̂ 2
QW

3
= σ̂ 2

ω(τ ) = (
MSW (A) − MSE

)/
2n (35)

σ̂ 2
QV ×W

3
= σ̂ 2

ν×ω(τ ) = (
MS[V ×W ](A) − MSE

)/
n (36)

4.3.2. Analysis of contrast variations for decomposition II. For decomposition II, the
original nested Factor A(B) is further decomposed into three items, that is, Factor A nested
by three contrasts can be equivalent to Factor A nested by Factor V , Factor W , and their
interaction V × W as A(V ), A(W ), and A(V × W ).

From the conclusion in the remark of Section 4.3.1, it is known that the total process
variation can be generally considered as the effect of these three factors (A, V , and W )
and their interactions. Thus, a full factor decomposition of the total sum of squares of three
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factors can be generally expressed as

SST = SSA + SSV + SSW + SSA×V + SSA×W + SSV ×W + SSA×V ×W + SSE (37)

From the nested design, it is known that SSA(V ) = SSA + SSA×V , SSA(W ) = SSA + SSA×W ,
and SSA(V ×W ) = SSA + SSA×V + SSA×W + SSA×V ×W . Thus, three decomposition models
are needed to represent all these nested factors of A(V ), A(W ), and A(V × W ), that is,

SST = SSA(V ) + SSV + SSW + SSV ×W + SSA×W (V ) + SSE (38)

SST = SSA(W ) + SSV + SSW + SSV ×W + SSA×V (W ) + SSE (39)

SST = SSA(V ×W ) + SSV + SSW + SSV ×W + SSE (40)

Here, both equations (38) and (39) are corresponding to the standard two-stage nested
design models. In fact, it is known that SSB = SSV + SSW + SSV ×W . Thus, by comparing
equation (40) with equation (7), it can be obtained that SSA(V ×W ) = SSA(B). So, there is no
need to analyze equation (40) anymore. The statistical models corresponding to equations
(38) and (39) are

yi jk = µ + τi(p) + νp + ωq + (νω)pq + (τω)iq(p) + ε(i pq)k (41)

yi jk = µ + τi(q) + νp + ωq + (νω)pq + (τω)i p(q) + ε(i pq)k (42)

From equation (41), the F-test for the nested Factor A(V ) is obtained based on the
expected mean squares table and the analysis of variance table shown in Tables 14 and 15
in the Appendix.

MSA(V )

MSE
∼ F(2(a − 1), d fE ) (43)

The corresponding estimation of this variance component is

σ̂ 2
Q2(V ) = σ̂ 2

τ (ν) = (
MSA(V ) − MSE

)/
2n (44)

A similar F-test can be conducted for the nested Factor A(W ) and estimation of σ̂ 2
Q2(W ).

5. Case study and results

A case study was conducted by initially analyzing six runs of old production data to provide
some suggestions for process improvement. A follow-up validation is further made through
collecting and analyzing another six runs of new production data after the process takes the
corresponding improvement.

First, the variance component analysis is conducted based on two factors, that is, a random
run factor A and a fixed site factor B. If the effect of Factor B is significant, a further
diagnostic analysis is made for the contrast variation components through three factors, that
is, run factor A, front-back factor V , and left-right factor W . For the old production data,
Table 2 shows the sum of squares of the full decomposition model based on Factor A and
Factor B with the levels of a = 6 and b = 4, respectively.
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Table 2. Sum of squares of the full factor decomposition for two factors.

A B A × B E Total

SS 0.045664 0.017633 0.049859 0.085920 0.199075

d f 5 3 15 48 71

Table 3. F-test of variance components for old process.

Variation
source Sum of squares (SS) Degree of freedom (d f ) Mean square (MS) F-test (F0) P

A ⇒ Q1 SSA = 0.045664 d f A = a − 1 MSA = SSA
d f A

MSA
MSE

= 5.10 0.00079

= 5 = 0.009133

A(B) ⇒ Q2 SSA(B) = SSA + SSA×B d f A(B) = b(a − 1) MSA(B) = SSA(B)
d f A(B)

MSA(B)
MSE

= 2.67 0.0028

= 0.095523 = 20 = 0.004776

B(A) ⇒ Q3 SSB(A) = SSB + SSA×B d fB(A) = a(b − 1) MSB(A) = SSB(A)
d fB(A)

MSB(A)
MSE

= 2.09 0.021

= 0.067492 = 18 = 0.003750

Error E SSE = 0.08592 d fE = ab(n − 1) MSE = SSE
d fE

= 48 = 0.00179

The analysis of the interested variance components Q1, Q2, and Q3 is made and summa-
rized in Table 3, where P-value indicates the significant level of F-tests.

From this analysis, it can be seen that the batch mean variation Q1is significant with a Type
I error not larger than 0.00079. Also, the site effect is significant, which is indicated by the F-
test for Q2 with a Type I error not larger than 0.0028, and for Q3 with a Type I error not larger
than 0.021. Therefore, the process improvement should focus on both batch mean variation
reduction and site variation reduction. The estimation of each variance components is
calculated from equations (11)–(13) as, σ̂ 2

Q1
= 0.00061, σ̂ 2

Q2
= 0.001, and σ̂ 2

Q3
= 0.00065.

To effectively find the root causes of site variations, the analysis of contrast variance
components is further conducted. The sum of squares of the full decomposition model
in equation (37) is summarized in Table 4. The further statistical F-tests of the contrast
variation components by using the nested models of equations (38) and (39) are summarized
in Table 5.

It is clear that the run-by-run variations nested by Factor V and Factor W [A(V ) and
A(W )] are all significant. Therefore, the tool setup repeatability should be enhanced to
reduce the run-by-run variation. However, for the within-run variation, only the effect of
the back-front contrast V (A) is significant with a Type I error not more than 0.0016. Thus,

Table 4. Sum of squares based on the full decomposition of three factors.

A V W V × W A × V A × W A × V × W E Total

SS 0.045664 0.007653 0.003906 0.006074 0.038094 0.009663 0.002101 0.085920 0.199075

d f 5 1 1 1 5 5 5 48 71
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Table 5. F-tests for the contrast variations.

Source of variation Sum of squares Mean square F-test P

Q2(BFB) ⇒ A(BFB) SSA(V ) = SSA + SSA×V MSA(V ) = SSA(V )
2(a−1)

MSA(V )
MSE

= 4.68 0.00016
⇒ A(V ) = 0.083758 = 0.008376

Q2(BLR) ⇒ A(BLR) SSA(W ) = SSA + SSA×W MSA(W ) = SSA(W )
2(a−1)

MSA(W )
MSE

= 3.09 0.0041
⇒ A(W ) = 0.055327 = 0.0055327

QFB
3 (A) ⇒ BFB(A) SSV (A) = SSV + SSV ×A MSV (A) = SSV (A)

a
MSV (A)

MSE
= 4.26 0.0016

⇒ V (A) = 0.045747 = 0.007625

QLR
3 (A) ⇒ BLR(A) SSW (A) = SSW + SSW×A MSW (A) = SSW (A)

a
MSW (A)

MSE
= 1.26 0.29

⇒ W (A) = 0.013569 = 0.002262

QD
3 (A) ⇒ B D(A) SS[V ×W ](A) = SSV ×W MSV ×W (A) = SS[V ×W ](A)

a
MS[V ×W ](A)

MSE
= 0.76 0.60

⇒ [W × V ](A) +SSA×V ×W = 0.001362
= 0.008175

Error E SSE = 0.08592 MSE = SSE
4a(n−1)

= 0.001790

Table 6. Sum of squares based on the full decomposition model of the new process.

A B A × B E Total

SS 0.008621 0.002841 0.021428 0.08425 0.11714

d f 5 3 15 48 71

the process improvement strategy for reducing the within-run variation should mainly focus
on reducing the back-front error in every run. It turns out that the fixed machine tabletop
position error is the major contribution of this within-run site variation. The estimates of
each significant variance component can be calculated from equations (34) and (44) yielding
σ̂ 2

ν(τ ) = 0.00097, σ̂ 2
τ (ν) = 0.0011, and σ̂ 2

τ (ω) = 0.00062.
After a careful adjustment of the printing machine tabletop and improving the inspection

of tool setup alignment and ink variability, six runs of new process data are collected
again for validation analysis. The variance component analysis based on the full factor

Table 7. F-tests of variance components for the new process.

Variation
source Sum of squares (SS) Degree of freedom (d f ) Mean square (MS) F-test (F0) P

A ⇒ Q1 SSA = 0.008621 d f A = a − 1 = 5 MSA = 0.001724 MSA
MSE

= 0.98 0.44

A(B) ⇒ Q2 SSA(B) = SSA + SSA×B d f A(B) = b(a − 1) = 20 MSA(B) = 0.001502
MSA(B)

MSE
= 0.86 0.64

= 0.030049

B(A) ⇒ Q3 SSB(A) = SSB + SSA×B d fB(A) = a(b − 1) = 18 MSB(A) = 0.001348
MSB(A)

MSE
= 0.77 0.72

= 0.024268

Error E 0.08425 d fE = ab(n − 1) = 48 MSE = 0.00175
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decomposition model of this new process is shown in Table 6. The F-test results of the
nested variance components are given in Table 7. Now, it shows there is no significant factor
anymore. The process improvement efficiency can be indicated by the percentage of the
total variation reduction as:

η = Var(old) − Var(new)

Var(old)
× 100% = SST (old) − SST (new)

SST (old)
× 100% = 41.13%

6. Conclusion

In the article, the variation decomposition and analysis for batch manufacturing processes
has been conducted by using the ANOVA method. A generic framework is provided for
decomposition of three typical variation components in batch manufacturing processes.
For a significant site variability, three diagnostic contrast components are defined for root
cause identification of the potential site variation patterns. When the interested variations
are induced by more than three factors, it generally needs many different nested models
for various variation component analyses. The use of a full factor decomposition model
to determine the needed nested models is suggested in the article, which can expedite the
statistical model development. Finally, the article illustrates the effectiveness of the proposed
method in the screening conductive gridline printing process.

Although the proposed variation analysis method is illustrated in a specific application
of the printing process, the proposed analysis method can be applied to other batch manu-
facturing processes where separation of the batch-by-batch variation and the within-batch
variation is needed. Also, when the potential variation patterns can be well defined by lin-
ear contrasts, the usage of the diagnostic contrasts can expedite the variation root cause
determination. If the contrast effects cannot be transferred into factors’ effect, a direct de-
composition of the sum of squares of the contrast components is needed to the development
of the nested effect models. It should be noted that when the interested variance components
include sample-to-sample variation, different models can be developed in the same way for
independent samples. However, when the samples are dependent, the proposed method
cannot be directly applied. This issue will be considered as the further research in future.

Appendix

For decomposition I of equation (5), Factor A and Factor B-within-A are all random. The
determination of the expected mean squares table is shown in Table 8 based on the general

Table 8. Expected mean square for decomposition I of equation (5).

R F R
a b n

Factor i j k Expected mean square

τi 1 b n E(MSA) = σ 2 + bnσ 2
τ

β j(i) 1 0 n E(MSB(A)) = σ 2 + nσ 2
β(τ )

ε(i j)k 1 1 1 E(MSE ) = σ 2
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Table 9. Analysis of variance table for decomposition I of equation (5).

Source of Degree of Mean square
variation Sum of squares (SS) freedom (d f ) (MS) F-test (F0)

Random factor
A ⇒ Q1

SSA = bn
∑a

i=1 (ȳi.. − ȳ...)2 d f A = a − 1 MSA = SSA
d f A

F A
0

= MSA
MSE

Random Factor
B(A) ⇒ Q3

SSB(A) = n
∑a

i=1
∑b

j=1 (ȳi j. − ȳi..)2 d fB(A) = a(b − 1) MSB(A) = SSB(A)
d fB(A)

F B(A)
0

= MSB(A)
MSE

Error E SSE = ∑a
i=1

∑b
j=1

∑n
k=1 d fE = ab(n − 1) MSE = SSE

d fE

× (yi jk − ȳi j.)2

Total SST = ∑a
i=1

∑b
j=1

∑n
k=1 d fT = abn − 1

× (yi jk − ȳ...)2

Table 10. Expected mean square for decomposition II of equation (7).

R F R
a b n

Factor i j k Expected mean square

τi( j) 1 1 n E(MSA(B)) = σ 2 + nσ 2
τ (β)

β j a 0 n E(MSB ) = σ 2 + nσ 2
τ (β) + (an

∑b
j=1 β2

j )/(b − 1)

ε(i j)k 1 1 1 E(MSE ) = σ 2

Table 11. Analysis of variance table for decomposition II of equation (7).

Source of Degree of Mean square
variation Sum of squares (SS) freedom (d f ) (MS) F-test (F0)

Random factor SSA(B) = n
∑a

i=1
∑b

j=1 d f A(B) = b(a − 1) MSA(B) = SSA(B)
d f A(B)

F A(B)
0

= MSA(B)
MSE

A(B) ⇒ Q2 × (ȳi j. − ȳ. j.)2

Fixed factor B SSB = an
∑b

j=1 (ȳ. j. − ȳ...)2 d fB = b − 1 MSB = SSB
d fB

F B
0

= MSB
MSA(B)

Error E SSE = ∑a
i=1

∑b
j=1

∑n
k=1 d fE = ab(n − 1) MSE = SSE

d fE

× (yi jk − ȳi j.)2

Total SST = ∑a
i=1

∑b
j=1

∑n
k=1 d fT = abn − 1

× (yi jk − ȳ...)2

rules discussed in Montegomery (1997). In the table, the first row indicates whether the
factor is random (R) or fixed (F), the second row indicates the level of each factor, and the
third row is the index of the factor level. A summary of the analysis of variance is shown in
Table 9.

Similar analysis is performed for decomposition II of equation (7), where Factor A-
within-B is a random factor but Factor B is a fixed factor. The determination of the expected
mean squares table is shown in Table 10. A corresponding summary of the analysis of
variances is given in Table 11.



184 JIN AND GUO

Table 12. Expected mean squares for contrast decomposition I of equation (29).

R F F R
a 2 2 n

Factor i p q k Expected mean square

τi 1 2 2 n E(MSA) = σ 2 + 4nσ 2
τ

βFB
(τ ) ⇒ νp(i) 1 0 2 n E(MSV (A)) = σ 2 + 2nσ 2

ν(τ )

βLR
(τ ) ⇒ ωq(i) 1 2 0 n E(MSW (A)) = σ 2 + 2nσ 2

ω(τ )

βD
(τ ) ⇒ (νω)pq(i) 1 0 0 n E(MSV ×W (A)) = σ 2 + nσ 2

ν×ω(τ )

ε(ipq)k 1 1 1 1 E(MSE ) = σ 2

Table 13. Analysis of variance table for contrast decomposition I of equation (29).

Source of variation Sum of squares Mean square F test

Random factor
A ⇒ Q1

SSA = bn
∑a

i=1 (ȳi.. − ȳ...)2 MSA = SSA
a−1 F A

0 = MSA
MSE

Random factor
BFB(A) ⇒ V (A)

SSV (A) = n
∑a

i=1 MSV (A) = SSV (A)
a F V (A)

0 = MSV (A)
MSE

×( ȳi1.+ȳi4.−ȳi2.−ȳi3.
2 )2

Random factor
BLR(A) ⇒ W (A)

SSW (A) = n
∑a

i=1 MSW (A) = SSW (A)
a F W (A)

0 = MSW (A)
MSE

× ( ȳi1.+ȳi2.−ȳi3.−ȳi4.
2 )2

Random factor
B D(A)
⇒ V × W (A)

SS[V ×W ](A) = n
∑a

i=1 MS[V ×W ](A) = SS[V ×W ](A)
a F V ×W (A)

0 = MS[V ×W ](A)
MSE

× ( ȳi1.+ȳi2.−ȳi3.−ȳi4.
2 )2

Error E SSE = ∑a
i=1

∑b=4
j=1

∑n
k=1 MSE = SSE

4a(n−1)

× (yi jk − ȳi j.)2

Total SST = ∑a
i=1

∑b=4
j=1

∑n
k=1

× (yi jk − ȳ...)2

Table 14. Expected mean squares for contrast decomposition II in equation (38).

R F F R
a 2 2 n

Factor i p q k Expected mean square

τ (βFB) ⇒ τi(p) 1 1 2 n E(MSA(V )) = σ 2 + 2nσ 2
τ (ν)

βFB ⇒ νp a 0 2 n E(MSV ) = σ 2 + 2na
∑2

j=1 ν2
j + 2nσ 2

τ (ν)

βLR ⇒ ωq a 2 0 n E(MSW ) = σ 2 + 2na
∑2

j=1 ω2
j + nσ 2

τω(ν)

βD ⇒ (νω)pq a 0 0 n E(MSV ×W ) = σ 2 + na(
∑2

i=1
∑2

j=1 (νω)2
i j + nσ 2

τω(ν)

[τ × βLR](βFB) 1 1 0 n E(MS[A×W ](V )) = σ 2 + nσ 2
τω(ν)

⇒ (τω)iq(p)

ε(i pq)k 1 1 1 1 E(MSE ) = σ 2
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Table 15. Analysis of variance table for contrast decomposition I of equation (38).

Source of variation Sum of squares Mean square F-test

Random factor
A(BFB) ⇒ A(V )

SSA(V ) = SSA(V ) MSA(V ) = SSA(V )
2(a−1) F A(V )

0 = MSA(V )
MSE

= SSA + SSA×V

Fixed factor
BFB ⇒ V

SSV = SSV = na
4 [ȳ.1. MSV = SSV F V

0 = MSV
MSA(V )

+ȳ.4. − ȳ.2. − ȳ.3.]2

Fixed factor
BLR ⇒ W

SSW = SSW = na
4 [ȳ.1. MSW = SSW F W

0 = MSW
MS[A×W ](V )

+ȳ.2. − ȳ.3. − ȳ.4.]2

Fixed factor
B D ⇒ V × W

SSV ×W = SSV ×W = na
4 [ȳ.1. MSV ×W = SSV ×W F V ×W

0 = MSV ×W
MS[A×W ](V )

+ȳ.3. − ȳ.2. + ȳ.4.]2

Random factor
[A × BLR](BFB)

⇒ A × W (V )

SS[A×W ](V ) = SSA×W (V ) MS[A×W ](V ) = SS[A×W ](V )
2(a−1) F [A×W ](V )

0 = MS[A×W ](V )
MSE= SSA×W + SSA×V ×W

Error E SSE = ∑a
i=1

∑b
j=1

∑n
k=1 E(MSE ) = SSE

4a(n−1)
× (yi jk − ȳi j.)2

Total SST = ∑a
i=1

∑b
j=1

∑n
k=1

× (yi jk − ȳ...)2

For analysis of the nested contrast variance components of decomposition I in equa-
tion (29), the expected mean squares table is shown in Table 12, where the effect of each
contrast within Factor run is random. A summary of the analysis of variances is given in
Table 13.

For analysis of the nested contrast variance components of decomposition II in
equation (38), the expected mean squares table is shown in Table 14, where the effect
of Factor run nested by each contrast is random, and each contrast effect is fixed. A corre-
sponding summary of the analysis of variances is given in Table 15.
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