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Recent developments in sensing and computer technology have resulted in most manufacturing processes becoming a data-rich
environment. A cycle-based signal refers to an analog or digital signal that is obtained during each repetition of an operation
cycle in a manufacturing process. It is a very important class of in-process sensing signals for manufacturing processes because it
contains extensive information on the process condition and product quality (e.g., the forming force signal in forging processes). In
contrast with currently available supervised classification approaches that heavily depend on the training dataset or engineering field
knowledge, this paper aims to develop an automatic feature selection method for the unsupervised clustering of cycle-base signals.
First, principal component analysis is applied to the raw signals. Then a new method is proposed to select information containing
principal components to allow clustering to be performed. The dimension of the problem can be significantly reduced through the
use of these two steps. Finally, a model-based clustering method is applied to the selected principal components to find the clusters
in the cycle-based signals. A numerical example and a real-world example of a forging process are used to illustrate the effectiveness
of the proposed method. The proposed technique is an important data pre-processing technique for the monitoring and diagnostic
system development using cycle-based signals for manufacturing processes.

1. Introduction

Due to recent developments in sensing and computer tech-
nology many process variables can now be measured on-
line and automatically stored during production to allow
manufacturing process monitoring and control. Among the
currently available process variables, the cycle-based sensing
signal is a very important class of signals in many manufac-
turing processes because it contains extensive information
that is related to both product quality and process vari-
ables. As the name implies, a cycle-based signal is an ana-
log or digital signal that is obtained using automatic sensing
during each repetition of an operation cycle in a manufac-
turing process, for example, the tonnage signal (forming
force) measured by strain sensors installed on a forging
press machine. Figure 1(a) illustrates the tonnage signals
of two production cycles that are sampled with respect to
the crank angle of a forming press machine. This signal con-
tains 224 data points in each cycle where the vertical axis
is the forming force measured in tons, and the horizontal
axis is the crank angle of the press. In Fig. 1(b), the two
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individual plots are superimposed to highlight the similar-
ities and differences between these two cycles. In our case,
the cycle-based signals are aligned naturally based on the
crank angle. When the natural index is not available, a statis-
tical method such as registration in functional data analysis
can be used to align the cycle-based signals (Ramsay and
Silverman, 1997).

In a forging process, the mean profile of the tonnage sig-
nals is determined by the physical process setups and work-
ing conditions i.e., material properties, workpiece geometry,
press shut height, and press speed. Variations in these sig-
nals are inevitable due to natural process variations caused
by the effects of inherent process disturbance factors, such
as randomness in lubrication distribution and material uni-
formity, etc. For example, in Fig. 1(b), the observed differ-
ence in the peak of the tonnage signal could be due to a
change in the process condition, such as insufficient lubri-
cation, and differences at other parts of the tonnage profiles
could reflect inherent natural process variations. Therefore,
the tonnage signal contains extensive information on the
forging process working condition and product quality.

These cycle-based signals exist not only in forging pro-
cesses but also in many other kinds of manufacturing pro-
cesses, e.g., the forming force in stamping processes, the
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Fig. 1. (a) The forging tonnages of two cycles; and (b) superimposed plots for two cycles.

holding force and current signal in spot welding processes,
the insertion force in engine assembly processes. There-
fore, it is of considerable importance to develop a generic
methodology for process monitoring and diagnosis that uti-
lizes cycle-based signals.

Due to the complexity of analyzing high-dimensional
signals, people often only use very simple statistics to
characterize the signals and perform monitoring stud-
ies in industrial practice. For example, the maximum
magnitude and the average value of the signal are the
most commonly used statistics (Knussmann and Rose,
1993; Grogan, 2002). In these methods, a large portion
of the information contained in the signals is not fully
explored. Therefore, monitoring systems based on these
simple statistics often suffer from high false-alarm rates
and/or poor detection rates for various types of faulty
conditions.

There are some reports in the literature on fully utiliz-
ing cycle-based signals for process monitoring and diag-
nosis purposes. Jin and Shi (1999) proposed a “feature-
preserving data compression” procedure to reduce the data
dimension after the use of a wavelet transformation on the
tonnage signals of stamping processes. Their feature pre-
serving criteria heavily depend on a pre-knowledge of the
stamping process. Koh et al. (1999a, 1999b) introduced a
uniformly most powerful test for individual coefficients in a
Haar transformation of cycle-based signals. Based on this
test, a monitoring system that is similar in nature to a She-
whart control chart is proposed to distinguish between nor-
mal and abnormal conditions in a process using cycle-based
signals. This method is only effective if the correlations be-
tween the Haar coefficients are small and can therefore be
neglected. If this is not the case then a large number of false
alarms will be generated. For the root cause identification
problem, Jin and Shi (2000) used a fractional factorial de-
sign of experiments approach to study the relationships be-
tween process variables and the variation patterns of the
cycle-based signals. Pittner and Kamarthi (1999) proposed
a wavelet-based procedure for feature extraction of signals.
They transformed the signals into the wavelet domain and
then selected wavelet coefficients based on the magnitude

of the coefficients. This approach is different to the one
we propose in which the differences between cycle-based
signals are the most interesting characteristics. We wish to
keep those coefficients that represent differences rather than
simply selecting in terms of a large magnitude. Lada et al.
(2002) have proposed a wavelet coefficient selection proce-
dure that is not only based on the magnitude of the coeffi-
cients as in Pittner and Kamarthi (1999) but is also based
on an additional term that penalizes the number of selected
coefficients. Its purpose is to keep the number of wavelet co-
efficients small and hence simplifying subsequent analysis.

From the above review it is clear that currently available
cycle-based signal analysis techniques either depend on en-
gineering field knowledge, the availability of training sam-
ples, or the magnitude of the features in the signal. Little
attention has been focused on the unsupervised clustering
of cycle-based signals, which can automatically extract key
features in the signals and group the signals into differ-
ent clusters. Jin and Shi (2001) have proposed a method to
develop a monitoring and diagnostic system that is able to
achieve automatic learning and continuous improvement of
the diagnostic performance. The proposed method includes
automatic fault detection, optimal feature extraction, op-
timal feature subset selection, and diagnostic performance
assessment. An exhaustive search method is used to con-
duct the feature selection. For a system with a large number
of extracted features, the computational load of the exhaus-
tive feature search becomes excessive.

In this article, we focus on feature selection for the unsu-
pervised clustering analysis of cycle-based signals, which is
very important in process monitoring and diagnostic sys-
tem development. The clustering of information will lead to
the following benefits: (i) the cluster information can help
to discover changes in working conditions during continu-
ous daily production runs; (ii) the production performance
can be assessed according to the discovered clusters, thus
enriching process knowledge and help to discover new op-
timal process conditions; (iii) the cluster information can
be used as supervisory training sets in the monitoring and
diagnostic system development. Since further analysis of
the clusters and their associated working conditions can
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reveal new knowledge for process monitoring, diagnosis,
and improvement, the technique proposed in this article
can also be considered as an important data pre-processing
technique for data dimension reduction in the development
of monitoring and diagnostic systems using cycle-based
signals.

For the clustering of a high-dimensional dataset, the
first step is often to reduce the data dimension. Several
dimension reduction techniques have been developed in
recent years including those of Carreira-Perpinan (1997)
and also Tanaka and Mori (1997). However, some of these
techniques, such as multi-dimensional scaling and pro-
jection pursuit techniques, are difficult to apply to the
complex high-dimensional datasets encountered when at-
tempting to find an optimal stress function or projection
transformation. In other data dimension reduction meth-
ods, such as principle component analysis and the self-
organizing map method, the feature selection techniques
focus more on the faithful representation of the original
data, instead of clustering (Duda et al., 2001). The focus
of this paper is on how to effectively select transformed
features/variables so as to reduce the data dimension for
the clustering. There is an extensive literature on variable
selection in multiple regression and supervised classifica-
tion (Draper and Smith, 1980; Guyon and Elissee, 2003).
However, few results have been presented on feature se-
lection in unsupervised clustering analysis. Fowlkes et al.
(1987) have proposed a forward step-wise variable selec-
tion procedure for a hierarchical clustering technique but
it cannot guarantee the global optimality, especially for a
high-dimensional cycle-based signals with a complex cor-
relation structure. Recently, Liu et al. (2003) developed an
algorithm for the simultaneous feature selection and clus-
tering under a Bayesian framework. The technique is quite
effective but is somewhat complex and is computationally
expensive.

In this paper, we propose a new technique for variable se-
lection and clustering analysis of cycle-based signals. First,
the cycle-based signals are modeled as a mixture of high-
dimensional normal distributions. Each working condition
or process fault corresponds to one component in this mix-
ture model. Then, Principal Component Analysis (PCA) is
used to find the major directions of the signal variations.
A new strategy to pick out the principal components that
contain the most information is proposed for the purpose
of clustering. Based on this strategy, a subset of the princi-
pal components is selected for further analysis. Hence, the
dimension of the problem is significantly reduced. Finally,
a clustering algorithm is applied to the selected principal
components to group the cycle-based signals. This tech-
nique can automatically find the clusters in a set of cycle-
based signals in an unsupervised manner.

This article is organized as follows. In Section 2, the prob-
lem is formulated and an overview of the proposed method
is presented. In Section 3, the key steps in the clustering,
that is, PCA and the strategy of selecting of information

containing principal components, are presented. Section 4
presents both a numerical simulation and a real-world
example of a forging process to illustrate the effectiveness
of this method. The conclusions are presented in Section 5.

2. Problem formulation

2.1. The modeling of cycle-based signals

A cycle-based signal can be viewed as a high-dimensional
multivariate vector whose dimensionality is equivalent to
the number of data points within one cycle-based signal. For
example, for the tonnage signals in Fig. 1(a and b) there are
224 data points per signal. Therefore, the tonnage signal can
be viewed as a 224-dimensional vector. Clearly, this multi-
dimensional vector is highly correlated over its 224 compo-
nents. The collected samples of cycle-based signals under a
fixed working condition are assumed to be independent and
to follow an identical multivariate normal distribution. The
covariance of the signal could be in an arbitrary structure,
i.e., the different data points of a cycle-based signal can be
correlated. In most cases, the multivariate sensing signal is
affected by many process factors. For example, the tonnage
signal in a forging process is affected by various factors such
as the temperature of the workpiece, the shut height adjust-
ment, lubrication, wear of the press, etc. Inevitably these
factors may randomly vary around their individual nomi-
nal values. From the central limit theory, the distribution
of the tonnage signals will tend to be a normal distribution.
In this paper, for different working conditions which corre-
spond to different process parameters, we assume they still
follow a multi-dimensional normal distribution but with
different parameters (means and variances).

If we denote Xn×p as a set of samples of cycle-based sig-
nals, where n is the number of samples and p is the dimen-
sion of the signals, and denote xT as a row vector of Xn×p

(one sample of cycle based signals), then at the kth working
condition, the distribution of x is given as:

φk(x | µk,Σk) = (2π )−
p
2 |Σk|− 1

2

exp
{

− 1
2

(x − µk)TΣ−1
k (x − µk)

}
, (1)

where µk and Σk are the mean and the covariance of the
measurements of the kth working condition, respectively.

Assume that there are q different working conditions ex-
isting in the collected set of signals Xn×p. Then, the distri-
bution of Xn×p can be represented as a finite mixture of
normal distributions (McLachlan and Peel, 2000).

fx(X | µ1, �1, . . . ,µq , �q ) =
n∏

i=1

q∑
k=1

τkφk(xi | µk, �k) (2)

where the τk, k = 1 . . . q, are positive numbers between zero
and one that represent the occurrence probability of each
working condition, thus, �

q/y
i=1τk = 1.
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2.2. Proposed clustering method

The objective of this paper is to provide an automatic fea-
ture extraction method for effective clustering of cycle-
based signals under unknown working conditions. There is
a huge body of literature on clustering techniques (Anon,
1989). They can be roughly divided into two categories:
(i) non-parametric hierarchical clustering methods (Arabie
et al., 1998); and (ii) model-based clustering methods
(McLachlan and Basford, 1988). In this paper, since the
data is modeled as a mixture of normal distributions, the
model-based clustering approach in which each component
in the mixture model (φk in Equation (2)) represents a clus-
ter in the data will be used.

The steps involved in clustering cycle-based signals are
illustrated in Fig. 2. Since the signals have a high dimen-
sionality and they will suffer the “curse of dimensionality”
(i.e., the sample size needed to estimate the density function
is proportional to the exponential of the number of dimen-
sions, see the discussions is Carreira-Perpinan (1997) and
Jimenez and Landgrebe (1998)), it is very difficult to apply
directly clustering algorithms to the raw dataset.

In this paper PCA (Jackson, 1991) is used to reduce the
dimension of the dataset as the first step in the data trans-
formation. PCA linearly transforms the raw dataset into a
new set of variables, called Principal Components (PCs).
Given a dataset Xn×p with p variables and n samples and
S is the p × p sample covariance matrix with eigenvalue-
eigenvector pairs (λ1, e1), (λ2, e2), . . . , (λp, ep), the ith prin-
cipal component is given by:

yi = eT
i x = ei1x1 + ei2x2 + · · · + eipxp, i = 1 . . . p, (3)

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and xT is a row vector of one
sample of the p variables. Also, the sample variance of yi
is λj, i = 1 . . . p, and the sample covariance between yi and
yj is zero for i �= i. In addition, the total sample variance is
trace(S) that is equal to λ1 + λ2 + · · · + λp, where trace(S)

Fig. 2. Methodology overview.

is the summation of the diagonal elements of S. The sample
variance explained by the ith principal component is given
by λi/trace(S).

Since the PCs are linear combinations of the original
variables, they will also follow a mixture of normal distri-
butions. Another point worth mentioning is that PCA is an
invertible transformation. All the variation information of
the dataset is captured in the PCs and the eigenvectors of
the covariance matrix of the dataset. In practice, after the
PCA transformation, people often simply select the first few
PCs with the largest eigenvalues and then apply clustering
operations to these selected PCs. The rationale behind this
practice is that the within-cluster variation is often smaller
than the between-cluster variation. Therefore, it is expected
that the clustering structure will show up in the first few
PCs that have the largest eigenvalues. However, although
it is usually true that PCs with a very small variation do
not contain much information, and hence can be treated
as noise, it is not always true that PCs with a large varia-
tion contain useful information for clustering (Chang, 1983;
Yeung and Ruzzo, 2001). An example with two clusters is
shown in Fig. 3(a–c).

In this figure, a two-dimensional dataset contains two
distinguishable clusters. However, since the within-cluster
variation of this dataset is quite large, the cluster structure
is totally lost in the first PC as shown in the histogram of
the first PC in Fig. 3(b). If the clustering is only based on
the first PC, no distinguishable clusters can be found, or
equivalently, we would say that there is no structure in the
dataset. Therefore, the traditional method of selecting PCs
only based on the eigenvalue magnitude is not appropri-
ate for our clustering purpose. We wish to develop a new
method that can effectively select PCs containing useful in-
formation from those PCs with large variations for future
clustering studies. The method and criteria for the selection
of information containing PCs are developed in Section 3.

After selecting the information containing PCs, the
model-based clustering method is used to cluster the
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Fig. 3. (a) The original dataset; (b) a histogram of the first PC;
and (c) a histogram of the second PC.

selected PCs. This can be done through the EM algorithm
(Dempster et al., 1977). The EM algorithm is a generic
maximum-likelihood estimation technique for use on in-
complete datasets. In the clustering of mixture models, the
membership information of the data point is considered to
be missing. In the maximization step, the model parameters
are estimated using maximum likelihood estimation given
the current guess of the incomplete data. In the expectation
step, the guessed value of the incomplete data is updated
based on the updated parameter estimates. In general, it
is not an easy task to evaluate the clustering performance
without knowing the true cluster structure in the dataset.
However, the performance of model-based clustering can
be evaluated through the Bayesian Information Criterion
(BIC) (McLachlan and Peel, 2000) which is defined as:

BIC ≡ 2l(x, θ̂) − m log(n) (4)

where l(x, θ̂) is the maximized log-likelihood of the mixture
model, m is the number of independent parameters in the
model, and n is the sample size. Based on the BIC, the
number of clusters can be selected quantitatively.

It can be seen that the critical issue is to effectively select
the information containing PCs for use in the proposed
clustering method. The selection of the PCs should be based
on the cluster structure rather than on the magnitude of
their variations. A detailed discussion is presented in the
following section.

3. Selection of information containing PCs

3.1. Assessment of the contributions of PCs to clustering

To select information containing PCs, a quantitative eval-
uation method for the contribution of the PCs to the clus-
tering should be first developed. Since the EM algorithm is

used for the clustering, information containing PCs should
be selected in such a way that the parameters of the com-
ponents in the mixture model can be estimated with a high
degree of accuracy. Now, the problem of how to select infor-
mation containing PCs is changed to how to select useful
variables (PCs) for the estimation of a mixture model, i.e.,
which variables (PCs) should be selected/added in a mul-
tivariate mixture model of normal distributions so that the
accuracy of the estimation results can be improved.

In this article, we handle this problem using mathemat-
ical formulations by considering a two-dimensional mix-
ture model with two components. Although it is a simple
2D case, some quantitative insights can be obtained from
this study. Assume n samples of two-dimensional process
variables are obtained as:

Xn×2 =




x11 x12

...
...

xn1 xn2


 ,

and denote

Xn×1
1 =




x11

...
xn1


 and Xn×1

2 =




x12

...
xn2


 .

(In our case, the clustering is on PCs. Therefore, Xn×2 con-
tains two PCs.) The mixture models for Xn×2, Xn×1

1 , and
Xn×1

2 are given as follows:

fX
(
Xn×2 | τ1,µ1,Σ1,µ2,Σ2

)
=

n∏
i=1

[τ1φ1(xi1, xi2 | µ1,Σ1) + (1 − τ1)φ2(xi1, xi2|µ2,Σ2)],

(5a)
fX1

(
Xn×1

1 | τ1, µ11, σ11, µ21, σ21
)

=
n∏

i=1

[τ1φ1(xi1|µ11, σ11) + (1 − τ1)φ2(xi1 | µ21, σ21)], (5b)

fX2

(
Xn×1

2 | τ1, µ12, σ12, µ22, σ22
)

=
n∏

i=1

[τ1φ1(xi2|µ12, σ12) + (1 − τ1)φ2(xi2 | µ22, σ22)], (5c)

where

µ1 =
[
µ11

µ12

]
, �1 =

[
σ 2

11 ρ112σ11σ12

ρ112σ11σ12 σ 2
12

]
,

µ2 =
[
µ21

µ22

]
, �2 =

[
σ 2

21 ρ212σ21σ22

ρ212σ21σ22 σ 2
22

]
,

and µij is the mean of the jth variable of the ith component,
σ 2

ij is the variance of the jth variable of the ith component,
ρ112 and ρ212 are the correlation coefficients between these
two variables within each of the two components, respec-
tively. Three estimation results can be obtained by using
the model in Equations (5a), (5b) and (5c), respectively.
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The variable (PC) selection problem is to determine which
estimation result is the most accurate. Particularly, we need
to determine if the estimation result using Equation (5a) is
significantly more accurate than the estimation result using
Equation (5b) or Equation (5c). If yes, both variables (x1
and x2) should be considered simultaneously. Otherwise,
one variable can be deleted to reduce the data dimension
in further clustering studies. In this way, the information
containing PCs that should be included in the clustering
variables can be selected.

It is known that the asymptotical accuracy of maximum
likelihood estimation can be evaluated using the Fisher
information matrix (Day, 1969). Define L(θ | x) as the
log-likelihood function of parameter set θ (e.g., for
the mixture model in Equation (5a), L(τ1,µ1,Σ1,µ2,

Σ2 | x) = ln[τ1, φ1, (x | µ1,Σ1) + (1 − τ1)φ2(x | µ2,Σ2)]
where x = [x1 x2]T ). The ijth element of the Fisher
information matrix is given by:

Fij(θ) = −E
(

∂2L(θ | x)
∂θi∂θj

)
,

where θi is the ith element of the parameter set. The asymp-
totical covariance of the estimation results of the maximum
likelihood estimation is the inverse of F. A “larger” infor-
mation matrix will result in a smaller variation in the esti-
mation, which means that the estimation is more efficient.
Unfortunately, an analysis using the analytical method for
the information matrix for a general maximum likelihood
estimation of a multi-dimensional and multi-component
mixture model is very difficult, if not impossible. How-
ever, insights can be gained through the analysis of a two-
dimensional mixture model with two normal components.
Based on these insights, we can obtain some guidelines on
how to select useful variables for the estimation of a mixture
model. In this paper, we will focus on the Fisher information
on the critical parameter τ1 in the mixture model. Compar-
ing with µ and Σ, τ1 is a relatively important parameter in
the clustering, which decides the size of each cluster. The
purpose of the following section is to provide insights on
which variables are needed to obtain an accurate estimation
of τ1.

3.1.1. Assessment of the Fisher information of
single variable case

Denote I(τ1) as the Fisher information regarding τ1, then
for a mixture model with two components φ1 and φ2, we
can obtain (Hill, 1963):

I(τ1) = 1
τ1τ2

[
1 −

∫ ∞

−∞

φ1(x)φ2(x)
τ1φ1(x) + τ2φ2(x)

dx
]
, (6)

where τ2 = 1 − τ1. Denote

S =
∫ ∞

−∞

φ1(x)φ2(x)
τ1φ1(x) + τ2φ2(x)

dx,

then for a single variable mixture of two normal distribu-
tions

S1 =
∫ ∞

−∞

(
exp

{−(1/2)(x − µ11)2/σ 2
11

}
∣∣2πσ 2

11

∣∣1/2

× exp
{−(1/2)(x − µ21)2/σ 2

21

}
∣∣2πσ 2

21

∣∣1/2

)/
(

τ1
exp

{−(1/2)(x − µ11)2/σ 2
11

}
∣∣2πσ 2

11

∣∣1/2

+ τ2
exp

{−(1/2)(x − µ21)2/σ 2
21

}
∣∣2πσ 2

21

∣∣1/2

)
dx, (7)

where the mixture distribution of x with two compo-
nents are f (xi) = τ1φ1(xi | µ1,Σ1) + (1 − τ1)φ2(xi|µ2,Σ2).
Using variable substitution z = (x − µ11)/σ11, and denot-
ing λ1 = σ11/σ21, d1 = (µ11 − µ21)/σ21, we have:

S1 =
∫ ∞

−∞

exp{−(1/2)(λ1z + d1)2}λ1/|2π |1/2

τ1 + τ2 exp{−(1/2)[(λ1z + d1)2 − z2]}λ1
dz. (8)

Assuming that τ1 and τ2 are constant then S1 is a function
of d1 and λ1. Figure 4(a and b) illustrates the relationships
between S1 and d1 and λ1 respectively. As would be intu-
itively expected S1 reaches a maximum (which means that
the Fisher information reaches a minimum and the estima-
tion accuracy has its lowest value) at d1 = 0 when λ1 = 1.
Under this condition, these two components totally overlap
one another.

3.1.2. Assessment of the Fisher information of
two variables case

In the two-variable case, a similar derivation can lead to the
Fisher information regarding τ1. Assume a two-dimension
mixture distribution with two components to be:

fX(X|τ1,µ1,Σ1,µ2,Σ2)
= τ1φ1(x1, x2|µ1,Σ1) + (1 − τ1)φ2(x1, x2|µ2,Σ2), (9)

where the expressions for µ1,µ2,Σ1 and Σ2 are given in
Equation (5) and X is [x1 x2]T . The expression for Equa-
tion (6) will become very complicated if Equation (9) is
directly applied. In order to keep the expression as simple
as possible so as to be able to gain insights, a linear trans-
formation of the variable is needed.

One useful result is that for two nonsingular covari-
ance matrices Σ1 and Σ2, there exists a nonsingular ma-
trix C, such that CTΣ1C = I and CTΣ2C = Λ, where I
is the identity matrix and Λ is a diagonal matrix (Scott,
1997). C is in the form of Σ−1/2

1 P and P is an appropriate
orthogonal rotation matrix that consists of the eigenvec-
tors of Σ−1/2

1 Σ2Σ
−1/2
1 . Therefore, a variable transforma-

tion can be defined as y = CT (x − µ1). The distribution
of these two components of the new variables are N(0, I)
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Fig. 4. (a) S1 as a function of d1 when λ1 = 1; and (b) S1 as a function of λ1 when d1 = 0.

and N(−CT (µ1 − µ2), Λ). The covariance structures of the
transformed variables are much simpler than the original
one. Moreover, it is known that MLE is invariant with re-
spect to a linear transformation (Day, 1969). Therefore, the
Fisher information can be studied based on y instead of x.
Let d′ = [d ′

1 d ′
2]T = CT (µ1 − µ2) and

Λ =
[

σ ′2
21 0

0 σ ′2
22

]
, (10)

then by a straightforward derivation, we have

S2 =
∫ ∞

−∞

∫ ∞

−∞

exp
{−(1/2)

(
(y1 + d ′

1)2
/
σ ′2

21 + (y2 + d ′
2)2/σ ′2

22

)}
/(2π )

τ1σ
′
21σ

′
22 + τ2 exp

{−(1/2)
(
(y1 + d ′

1)2
/
σ ′2

21 − y2
1 + (y2

2 + d ′
2)

/
σ ′2

22 − y2
2

)} dy1dy2. (11)

Clearly S2 is a function of d′, σ ′
21 and σ ′

22. This expression
can be further simplified under some special cases as dis-
cussed in the following section.

3.1.3. Contributions of the second variable
In order to understand when a variable is needed for the
estimation of τ1, its contribution to the estimation perfor-
mance should be assessed. The following special cases will
be discussed based on Equation (11).

Case 1: Σ1 and Σ2 are diagonal matrices.
In this case:

C = Σ
− 1

2
1 =

[
1/σ11 0
0 1/σ12

]
.

Hence, the absolute value of the components of d′
is: [

D1/σ11

D2/σ12

]
,

and

Λ =
[

σ 2
21/σ

2
11 0

0 σ 2
22/σ

2
12

]
,

where [D1 D2]T is defined as the absolute value of
µ1 − µ2. Clearly, these two variables contribute to
the efficiency of the estimation individually. If the
second variable is a normally distributed random
variable, which means σ 2

12 = σ 2
22 and D2 = 0, then

the double integral is separated in Equation (11)

and the integration with respect to y2 can be inte-
grated out. Therefore, y2 will not contribute to the
efficiency of the estimation. This result is not sur-
prising because under this condition, x1 is indepen-
dent of x2, and x2 does not contain any structures.
Therefore, x2 will not contribute to the estimation.

Case 2: σ12 = σ22, µ12 = µ22, but ρ112 �= 0 or ρ212 �= 0.

In this case, there is no cluster structure in variable x2, but
there exists a correlation between variable 1 and variable 2.
First, consider the relationship between Σ1,Σ2 and Λ. It is
known that the diagonal elements of Λ are the eigenvalues
of Σ−1

1 Σ2. For a two-dimensional problem, we can obtain:

σ ′2
21 = (A − √

B)

2
(
1 − ρ2

112

)
σ 2

11

and σ ′2
22 = (A + √

B)

2
(
1 − ρ2

112

)
σ 2

11

, (12)

where A = σ 2
11 + σ 2

21 − 2σ11σ21ρ112ρ212 and B = σ 4
21−

2σ 2
21σ

2
11−4σ 3

21ρ112ρ212σ11+σ 4
11−4σ 3

11ρ112ρ212σ21+4σ 2
11ρ

2
112σ

2
21+
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4σ 2
11ρ

2
212σ

2
21. Clearly, the variance of the second variable

does not appear in the equation. Second, consider the
distance d′. To get the relationship between d′ and
Σ1,Σ2,µ1 − µ2, we need to know CT . However, even
in this two-dimensional case, the general expression for
CT is too complicated to list. We can assume ρ112 = 0 to
simplify the expression. Since ρ112 and ρ212 are symmetric
in the problem setting, we can expect that the impacts of
ρ112 and ρ212 on the Fisher information are the same. With
ρ112 = 0, we can obtain:

CT
[

D1
0

]
=

[
d ′

1
d ′

2

]
=




D1E

ρ212σ21

√
E2

/(
ρ2

212σ
2
21σ

2
11

) + 1

D1F

ρ212σ21

√
F2

/(
ρ2

212σ
2
21σ

2
11

) + 1


 ,

(13)

where

E =
σ 2

11 + σ 2
21 +

√
σ 4

11 − 2σ 2
11σ

2
21 + σ 4

21 + 4σ 2
11σ

2
21ρ

2
212

2σ 2
11

− 1,

F =
σ 2

11 + σ 2
21 −

√
σ 4

11 − 2σ 2
11σ

2
21 + σ 4

21 + 4σ 2
11σ

2
21ρ

2
212

2σ 2
11

− 1.

Clearly, the variance of the second variable also does
not appear in the expression of [d ′

1 d ′
2]T . Combining with

Equation (12), it can be concluded that the variance of the
second variable does not affect the asymptotical efficiency
of the maximum likelihood estimation. Substituting Equa-
tions (12) and (13) into Equation (11), the effect of the
correlation between x1 and x2 can be studied. Figure 5 il-
lustrates the relationship between S2 and ρ212. Clearly, S2
is a monotonically decreasing function with respect to ρ212,
which means that with a larger ρ212, the Fisher information
will become larger, and hence the variance of the estimation

Fig. 5. S2 as a function of ρ212 when σ11 = 2 and σ21 = 3.

result will become smaller. Therefore, if the sample size is
large, the second variable will still contribute to the estima-
tion through the correlation among variables even though
the second variable does not contain any cluster structures.

A very interesting special case of case 2 is Σ1 = Σ2, i.e.,
σ21 = σ11 and ρ112 = ρ212. In this case, σ ′

21 = 1 and σ ′
22 = 1

from Equation (12). S2 is determined only by d′. Defining
	 as the Euclidean length of d′ and using the variable trans-
formation:

z = 1
	

[
d ′

1 −d ′
2

d ′
2 d ′

1

]
y,

we can transform Equation (11) into:

S2 =∫ ∞

−∞

∫ ∞

−∞

exp{−(1/2)(	2 + z2
1 + z2

2 + 2	z1)}/(2π )
τ1 + τ2 exp{−(1/2)(	2 + 2	z1)} dz1dz2.

(14)

Clearly, the integration of z1 and z2 are separated. Since:

1√
2π

∫ ∞

−∞
exp

(
− 1

2
z2

2

)
dz2 = 1,

therefore:

S2 =
∫ ∞

−∞

exp{−(1/2)(	2 + z2
1 + 2	z1)}/(

√
2π )

τ1 + τ2 exp{−(1/2)(	2 + 2	z1)} dz1. (15)

Comparing Equation (15) and Equation (8) with λ1 = 1,
they are the same except that 	 replaces d1. Since 	 is the

length of d′, which is CT (µ1 − µ2) and C = Σ
− 1

2
1 P, where

P is an orthogonal rotation matrix, P will not change the
length of a vector. Therefore 	2 is (µ1 − µ2)TΣ−1

1 (µ1 −
µ2). In a two-dimensional case, we can further obtain
(Chang, 1976):

	2 = (
D2

1 + D2
2 − 2ρD1D2

)
/(1 − ρ2), (16)

where [D1 D2]T is defined as the absolute value of µ1 − µ2
and ρ is ρ112 or ρ212. It is straightforward to prove that 	2 is
monotonically increasing with respect to ρ. However, since
S1 is monotonically decreasing with 	2 based on Fig. 4(a),
even if D2 is zero, the second variable will still contribute
to the efficiency of the estimation through the correlation
between these two variables.

Based on the above studies, it can be seen that an as-
sessment of the contribution of the PCs to data clustering
should consider two factors: (i) whether the PCs contain
a multiple cluster structure; and (ii) whether the PCs have
within-cluster with other PCs that contain a cluster corre-
lations structure. A summary remark is given as follows:

� A variable will contribute to the model-based clustering
if it contains a cluster structure (i.e., the variable itself
is a mixture of different distributions) or it has within-
cluster correlations with other variables that contain a
cluster structure. It is worth mentioning that this point
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Fig. 6. The decision making process procedure for variable selection for subsequent clustering.

is intuitive and can be qualitatively illustrated by a sim-
ple example as follows. Consider a 2-D discrimination
problem and assume that there are two clusters that only
differ from one another in the mean of the first variable.
These two variables are correlated with one another and
hence the distributions of the clusters are tilted ellipses.
Clearly in this case, the best linear discriminator will not
be parallel to either axis of the coordinate system. The
second variable plays a role in the discrimination. Fur-
thermore, if the correlation between the two variables
gets larger, the ellipse gets narrower. Hence, the cluster-
ing result will get better. Another point that needs to be
emphasized is that the selected PCs are actually uncor-
related with one another overall although they could be
highly within-cluster correlated. Therefore, there is no
colinearity issue of the selected PCs. The above mathe-
matical analysis provides us with some quantitative in-
sights for checking the significance of variable correla-
tions on the estimation accuracy.

� It should be pointed out that the property derived from
the Fisher information is an asymptotic property, which
means that it is true only for large sample sizes. If the
sample size is small then sample uncertainty will play
an important role. Unfortunately, it is very difficult to
quantify the impact of the sample size. Numerical study
is often needed to obtain the impacts for particular cases.
Nevertheless, because of the automated sensing technol-
ogy in modern manufacturing processes, a large sample
set is assumed in the paper.

3.2. Procedures to select information containing PCs
for clustering

3.2.1. Overview of the selection procedures
In the above analytical study, we identified two contributing
factors (the cluster structure and the within-cluster corre-
lation with other variables) of a variable to the estimation
efficiency of a mixture model. An automatic analysis proce-

dure for selecting information containing PCs is developed
as shown in Fig. 6.

S1. PCA of the original dataset.
S2. Since the PCs that correspond to small variations can

be considered as noise, only those PCs that correspond
to large variations are kept. Accumulation of 90%–95%
of the total variation is the commonly used threshold
in PC selection in practice.

S3. To identify if the PCs contain cluster structures, we use
a normality test. If a PC passes the normality test (i.e.,
the PC follows a normal distribution), it does not con-
tain any cluster information. The detailed discussion
on how to check the normality will be given in Section
3.2.2. Based on the normality test, if all the PCs are
normal, then no structures can be found in the dataset.
On the other hand, if all PCs are non-normal, then all
the PCs will contribute to the clustering at least through
the cluster structure within themselves. We need to keep
all of them in the clustering. If some of the PCs are
non-normal and some are normal, we will keep the
non-normal distributed PCs for clustering, and further
judge whether the normally distributed PCs should be
included in the clustering in the following step.

S4. A normally distributed PC could still contribute to the
model-based clustering through the within-cluster cor-
relation. To check the within-cluster correlation, cluster
information on the dataset is needed. A practical way
to conduct the test is as follows. Assume PCkj is a PC
that is normally distributed and {PCki , i = 1 . . . n1} is
the set of PCs that are non-normally distributed, where
n1 is the total number of non-normally distributed PCs.
Then for each i, i = 1 . . . n1, maximum likelihood esti-
mation can be used to find the clusters in PCki . Based
on these cluster structures, we can check if a within-
cluster correlation exists between PCki and PCkj .

S5. Assume in step 4 that PCki can be clustered into
two clusters. Denote PCl

ki
as the lth sample of PCki

and {PCl
ki

, l ∈ C1} and {PCl
ki

, l ∈ C2} are the two
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clusters. Then we can check the correlation between
{PCl

ki
, l ∈ C1} and {PCl

kj
, ∈ C1} and the correlation be-

tween {PCl
ki
, l ∈ C2} and {PCl

kj
, l ∈ C2}. If either clus-

ter shows correlation behavior then PCkj will con-
tribute to the clustering of PCki . Hence, we shall in-
clude it in the final clustering. If PCkj is not within-
cluster correlated with any PCki , then it only contains
non-structured normally distributed noise. It should
be excluded in the final clustering. The existence of
the correlation can be tested using a t-distribution
(Montgomery and Runger, 1994). Similar to the nor-
mality test, a critical value needs to be selected for the
correlation test. Since correlation only contributes to
the clustering through another variable that does have a
cluster structure, only a strong correlation will result in
a significant impact on the clustering as shown in Fig. 5.
Hence, the critical value often needs to be selected to be
large. The critical value can be selected quantitatively
following the procedure in Section 3.1. Our experience
also shows that a critical value of 0.2–0.5 is a good
choice in most cases.

After these five stages, the information containing PCs
will be picked out from all the PCs. One point to be high-
lighted is that we have selected the variable based solely
on its contribution to a two-variable clustering case. This
means that the interaction of three or more variables within

Fig. 7. OC curves for the Jarque-Bera test for typical mixture distributions; (a) σ1 = σ2 = 1, τ1 = 0.2, and d = µ2 − µ1; (b) σ1 = σ2 =
1, τ1 = 0.5, and d = µ2 − µ1; (c) µ1 = µ2 = 0, τ1 = 0.2, and σ1 = 1; (d) µ1 = µ2 = 0, τ1 = 0.5, and σ1 = 1.

the cluster is ignored at the PC selection step, however, any
higher-order correlation among more than two variables is
considered in later stages through the model-based cluster-
ing of all selected PCs.

3.2.2. Normality check to detect cluster structures
There are many normality checking routines, such as the
Kolmogorov-Smirnov test, Lilliefors test, the Jarque-Bera
test, etc. (Mardia, 1980). In this study, we use the Jarque-
Bera test. Other procedures are also used and it is found
that the performance of other test procedures is similar.
The statistics used in the Jarque-Bera test are:

Q = n
6

[
J2 + (B − 3)2

4

]
, (17)

where J and B are the skewness and kurtosis of the random
variable, respectively, and n is the sample size. It is known
that Q asymptotically follows a chi-square distribution with
two degrees of freedom. For a specific α-value and under
large sample condition, if Q < χ2

α,2, then the null hypoth-
esis (the sample follows a normal distribution) cannot be
rejected. Otherwise, it concludes that the sample does not
follow a normal distribution, and hence contains a multiple
cluster structure. To provide guidelines on the application of
the Jarque-Bera test, Operation Characteristic (OC) curves
are generated as shown in Fig. 7(a–d) through Monte Carlo
simulation.
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The OC curves illustrate the miss detection probability
(also called the β error) for a specific mixture distribution
under a given specific false-alarm probability (also called
the α error). For example, the solid curves in Fig. 7(a) are
the β errors when the α error equals 0.05 and the mean dif-
ference of the two components in the mixture distribution
varies from zero to five, and the proportion of one compo-
nent is 0.2.

Monte Carlo simulation is used to obtain these OC
curves. Since the Jarque-Bera test is an asymptotical test, we
cannot use χ2

α,2 as the critical value when the sample size is
small. Therefore, the first step generating the OC curve is to
obtain the critical values through simulation. First, 10,000
replicated samples with sample sizes of 100, 500 and 1000 of
a univariate standard normal distribution N(0,1) are gen-
erated. Then for each sample, the Q statistic is calculated.
Finally, the 95% and 99% points of the Q statistic (please
note that we have 10,000 Q statistics for each sample size),
which are taken as the critical values, are obtained for each
sample size. The 95% points for sample sizes of 100, 500
and 1000 are 5.08, 5.94 and 6.04, respectively. Similarly, the
99% points for sample sizes of 100, 500 and 1000 are 11.21,
11.13, and 10.24, respectively. It is interesting to note that
χ2

0.05,2 and χ2
0.01,2 are 5.99 and 9.21, respectively. It is clear

that when the sample size increases, the percentile values
get closer to the asymptotical values.

After obtaining the critical values for a specific α value
and sample size, we can further obtain the β error for a
specific non-normal distribution. Assume a univariate vari-
able x is a mixture of two normal distribution N(0, 1) and
N(d, σ2/σ1) and the proportion of the first component is
τ1. Given these parameters, samples of this mixture dis-
tribution can be generated and the corresponding Jarque-
Bera test statistics can be obtained. In the Monte Carlo
simulation, 10,000 replicates are generated under specific
conditions (sample size n, d and σ2/σ1). From these repli-
cates, the miss-detection probability can be estimated as
the ratio between the number of Q statistics less than the
corresponding critical value and total number of replicates
(10,000 in our case).

With this OC curve, we can select the proper α-value
based on the desired separation (this is often obtained based
on engineering judgment). Clearly when the α error gets
smaller, the β error gets larger. When the separation (dif-
ference in means and/or variances of the components of
the mixture) gets larger, the β error gets smaller for a given
α error. Figure 7(a–d) clearly illustrates these properties.
In practice, we can often determine the level in the sepa-
ration of the components based on engineering judgment.
For example, it is known that two normal distributions with
a mean separation of two standard deviations cannot be
separated with a small miss-detection rate and false-alarm
rate. Therefore, the critical values in the normality test can
be set in such a way that it will only detect the mixture that
contains components separated by more than two standard
deviations.

4. Case studies

4.1. A numerical example

To illustrate the effectiveness of the proposed method, a
numerical study is conducted. A dataset that consists of
1000 samples of 20 variables is generated. Among these 20
variables, 15 variables (x6 − x20) only contain normal noise
with a zero mean and a variance between 0 ∼ 2. x1 ∼ x3
follow a three dimensional mixture of normal distributions
with µ1−3

1 = [6 2 0]T ,

Σ1∼3
1 =




12 1.5 1.3
1.5 2 1.2
1.3 1.2 2


 ,

µ1∼3
2 = [0 00]T , �1∼3

1 = I, and τ1 ∼ 0.4.

Also x4–x5 follows a two-dimensional mixture of normal
distribution with µ4∼5

1 = [−3 0],

�4∼5
1 =

[
9 1.9
1.9 2

]
,

µ4∼5
2 = [0 0]T , �4∼5

2 = I, and τ1 = 0.35. The first compo-
nent of x1 ∼ x3 happens during the sample number 101∼
500. The first component of x4 ∼ x5 happens during the
sample number 651∼1000. Since they are not overlapping
one another, there are three clusters in the generated data
representing three working conditions: the first faulty con-
dition (101∼500) that is represented by the first compo-
nent of x1 ∼ x3, the second faulty condition (651∼1000),
and the normal working condition that is represented by
the rest. Figure 8 shows the samples of x1 ∼ x6. From the
plot, it can be seen that faulty condition 1 is separated
from the other working conditions. However, faulty condi-
tion 2 is not easily distinguished from the normal working
condition.

PCA was performed on this dataset and Fig. 9(a and
b) shows the results. Figure 9(a) is a Pareto plot of the

Fig. 8. The first six dimensions of the generated dataset.
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Fig. 9. The PCA results for the dataset: (a) a Pareto plot of the eigenvalues of the PCs: and (b) the first two PCs.

eigenvalues of the PCs. It is clear that the first 10 PCs
account for more than 95% of the total variation. It is there-
fore safe to only consider the first 10 PCs in the clustering
analysis. However, not all PCs contain information. Figure
9(b) shows the first two PCs which account for about 50%
of the total variation. However, in these two PCs, the nor-
mal condition and faulty condition 2 completely overlap
one another. Thus, we will not get a good result if only the
first two PCs are used.

Following the scheme proposed in this paper, informa-
tion containing PCs can be selected. In this case, PC1, PC4,
PC7 and PC9 fail the normality test at a significance level
at 0.1. Then EM clustering is conducted on each of these
PCs. Based on the clustering results, within-cluster corre-
lation is checked for other PCs with a critical value of 0.2.
It turns out that PC2 and PC3 should also be included in
the analysis. Figure 10 shows the first two selected PCs, the
first PC and the fourth PC. It is clear that these PCs contain
significant amounts of cluster information.

Fig. 10. The first two selected PCs.

The EM clustering algorithm is applied to the original
dataset, the first 10 PCs, and the six selected PCs, respec-
tively. Since the true cluster structure is known in this case,
we can use an adjusted Rand index (Rand, 1971; Hubert
and Arabie, 1985) to evaluate the performance of the clus-
tering. An adjusted Rand index is a quantitative index that
measures the agreements between two partitions of a set.
The maximum value is one, which means that these two
partitions are identical to one another. The expectation of
the adjusted Rand index for two random partitions is zero.
The adjusted Rand index of the clustering results based on
the original dataset, the first 10 PCs, and the selected PCs
are denoted as RandX, Rand10PCs, and RandSelected PCs, re-
spectively. To compare the clustering performance, 50 nu-
merical cases are conducted and RandX, Rand10PCs, and
RandSelected PCs are shown in Fig. 11.

Clearly, in most cases, the clustering results based on se-
lected PCs have a higher adjusted Rand index than the
results based on the original dataset and those based on

Fig. 11. The adjusted Rand indices for 50 cases.
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Fig. 12. A typical crankshaft forging process.

the first 10 PCs. Quantitatively, in about 90% of cases,
RandselectedPCs is higher than RandX; and in about 80% of
cases, Randselected PCs is higher than Rand10 PCs. The evidence
is clear that the proposed scheme is quite helpful to the clus-
tering in this case study. In the next section, a real-world ex-
ample is presented to show the effectiveness of the proposed
technique.

4.2. Case study for unsupervised clustering
of forging tonnages

A historic dataset of forging tonnage signals is used to eval-
uate the efficiency of the proposed method. A diagram of a
typical crankshaft forging process is shown in Fig. 12.

In this process, the workpiece passes a heater, a pre-form
press, the main press, the trim press, a twister, precision
finishing press, and finally the cooling tower. The major
deformation of the workpiece happens at the main press.
Strain sensors are mounted on the columns of the main
press to measure the tonnage signals. The dataset contains
906 tonnage signals from the strain sensor mounted on
one of the columns of the main press. The sensor read-
ings have been calibrated according to the force. There-
fore, the output of the sensor is tonnage force, instead of
strain.

These 906 tonnage signals are shown in Fig. 13(a). It can
be seen that the signals are very similar to one another. It

Fig. 13. (a) The 906 tonnage signals; (b) Pareto plot of the variances of the PCs; and (c) the shape of the eigenvector corresponding
to the largest eigenvalue.

is necessary to first cluster the signals into different groups
for further analysis. However, it is very difficult to cluster
the signals into different groups based on the original time-
domain signals as shown in Fig. 13(a) because of their high-
dimensionality. Following the proposed scheme as shown
in Fig. 2 in this article, PCA is performed. The Pareto plot
of the variances of the PCs is shown in Fig. 13(b). The first
10 PCs account for more than 95% of the total variation.
Therefore, only these PCs are considered in the clustering.
For each PC, there are 906 samples. The shape of the eigen-
vector corresponding to the largest eigenvalue is shown in
Fig. 13(c). From this shape, it can be seen that the variation
pattern of the cycle-based signals is related to their profile
mean value. The histograms of the first four PCs are shown
in Fig. 14(a–d).

A normality test with a significance level of 1% is used
to check the normality of the first 10 PCs. It is found that
PC1–PC4, PC6, PC8 and PC9 fail the test, which means
that they contain certain separation information. Based on
these PCs, a correlation test with a critical value of 0.3 is
conducted and the result shows that no other PCs need to
be included in the analysis.

The model-based clustering is conducted based on the
selected PCs and the first 10 PCs, respectively. The results
are shown in Fig. 15(a and b).

The 906 tonnage signals are all clustered into three clus-
ters in these two cases. However, clusters 2 and 3 from the
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Fig. 14. Histograms of the first four PCs: (a) PC1; (b) PC2; (c) PC3, and (d) PC4.

first 10 PCs are mixed together in the first two PCs. They
are more separated in the clustering results based on the
selected PCs. The BIC values of these two clustering cases
are also calculated. We obtain that BICfirst 10 PCs = −83 970
and BICselected PCs = −61 010, which means that the esti-
mation based on the selected PCs is a better model. The
process is further investigated based on the clustering re-
sults. It is shown that the data points of clusters 1 and 2
possibly come from two different shut height setups. The

Fig. 15. The clusters obtained using: (a) the first 10 PCs; and
(b) the selected PCs.

third cluster that has a larger variation may be a result
of a variation in the lubrication. With this information at
hand, further discrimination and online monitoring can be
pursued.

5. Conclusions

An automatic feature extraction method for dimension re-
duction and an analysis procedure for unsupervised clus-
tering of cycle-based signals are proposed in this paper.
First, the principal component analysis is used to linearly
transform the signals into PCs. Then, the PC accounting
for large variations and “information containing” PCs are
selected among all the PCs. It is found that a cluster struc-
ture in the PCs and the within-cluster correlation between
PCs will contribute to the model-based clustering. A sim-
ulation study and a real-world example of forging tonnage
signal clustering illustrated the effectiveness of this method.
Based on the initial clustering results for the forging process,
physical insights into the process can be obtained.

The proposed technique has strong engineering rele-
vance. Due to rapid developments in sensing technology,
a huge amount of historical measurement data are now
usually available. The proposed unsupervised technique
can cluster these historical data into different preliminary
groups to provide more information or a starting point for
monitoring and diagnostic system design.

One point that needs to be mentioned is that PCA is ap-
plied to the raw signals in this paper. However, this method
can also be applied to other transformations of the raw
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signals without modification. For example, wavelet trans-
formation can be used to transform the raw signal into the
time-frequency domain. Then the PCA and variable selec-
tion can be applied to the wavelet coefficients. In this way,
the method proposed in this paper can be integrated with
engineering-knowledge based variable selection methods.
Furthermore, we assumed that the cycle-based signal fol-
lows a normal distribution. This assumption will be more
accurate for the wavelet coefficients since they can be viewed
as a summation of the cycle-based signal at a certain inter-
val. These problems are currently under investigation.

Acknowledgements

The authors would like to thank the Editors and reviewers
for their insightful comments and suggestions, which have
significantly improved the paper quality and readability.
The authors also gratefully acknowledge the financial sup-
port of NSF grant 0330356 and a National Science Foun-
dation (NSF) CAREER award DMI-0133942.

References

Anon (1989) Discriminant analysis and clustering. Statistical Science,
4(1), 34–69.

Arabie, P., Hubert, L.J. and Soete, G.D. (eds). (1998) Clustering and Clas-
sification, World Scientific, River Edge, NJ.

Carreira-Perpinan, M. (1997) A review of dimension reduction tech-
niques. Technical report CS-96-09, Department of Computer Sci-
ence, University of Sheffield, Sheffield, UK.

Chang, W.C. (1976) The effects of adding a variable in dissecting a mix-
ture of two normal populations with a common covariance matrix.
Biometrika, 63(3), 676–678.

Chang, W.C. (1983) On using principal components before separating a
mixture of two multivariate normal distributions. Applied Statistics,
32, 267–275.

Day, N.E. (1969) Estimating the components of a mixture of normal
distribution. Biometrika, 56(3), 463–474.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum likelihood
for incomplete data via the EM algorithm. Journal of the Royal
Statistical Society B, 39, 1–38.

Draper, N.R. and Smith, H. (1980) Applied Regression Analysis, Wiley,
New York, NY.

Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern Classification, 2nd
edn., Wiley, New York, NY.

Fowlkes, E.B., Gnanadesikan, G. and Kettenring, J.R. (1987) Variable
selection in clustering and other contexts, in Design, Data, and Anal-
ysis: By Some Friends of Cuthbert Daniel. Wiley, New York, NY.

Grogan, R. (2002) High speed stamping process improvement thru force
and displacement monitoring. Technical report, Helm Instrument
Company, Maumee, OH.

Guyon I. and Elissee, A. (2003) An introduction to variable and feature
selection. Journal of Machine Learning Research, 3, 1157–1182.

Hill, B.M. (1963) Information for estimation of the proportions in mix-
tures of exponential and normal distributions. Journal of the Amer-
ican Statistical Association, 58, 918–932.

Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of Clas-
sification, 2, 193–198.

Jackson, J.E. (1991) A User’s Guide to Principal Components, Wiley, New
York, NY.

Jimenez, L. and Landgrebe, D.A. (1998) Supervised classification in high-
dimensional space: geometrical, statistical, and asymptotical prop-
erties of multivariate data. IEEE Transactions on Systems, Man, and
Cybernetics—Part C: Applications and Reviews, 28(1), 39–54.

Jin, J. and Shi, J. (1999) Feature-preserving data compression of stamp-
ing tonnage information using wavelets. Technometrics, 41(4), 327–
339.

Jin, J. and Shi, J. (2000) Diagnostic feature extraction from stamping ton-
nage signals based on design of experiments. ASME Transactions,
Journal of Manufacturing Science and Engineering, 122(2), 360–
369.

Jin, J. and Shi, J. (2001) Automatic feature extraction of signals for in-
process diagnostic performance improvement. Journal of Intelligent
Manufacturing, 12, 257–268.

Knussmann, K.D. and Rose, C. (1993) Signature-based process control
(SbPCTM). Technical report, Signature Technologies, pp. 311–325.

Koh, C.K.H., Shi, J., Williams, W. and Ni, J. (1999a) Multiple fault
detection and isolation using the Haar transform—part 1: theory.
ASME Transactions, Journal of Manufacturing Science and Engi-
neering, 121(2) 290–294.

Koh, C.K.H., Shi, J., Williams, W. and Ni, J. (1999b) Multiple fault de-
tection and isolation using the Haar transform—part 2: application
to the stamping process. ASME Transactions, Journal of Manufac-
turing Science and Engineering. 121(2), 295–299.

Lada, E.K., Lu, J.-C., and Wilson, J.R. (2002) A wavelet-based procedure
for process fault detection. IEEE Transactions on Semiconductor
Manufacturing, 15(1), 79–90.

Liu, J.S., Zhang, J.L., Palumbo, M.J. and Lawrence, C.E. (2003). Bayesian
clustering with variable and transformation selections. Bayesian
Statistics 7, 249–275.

Mardia, K.V. (1980) Tests of univariate and multivariate normality, in
Handbook of Statistics: Vol 1, Krishnaiah, P. R. (eds.), North-
Holland, Amsterdam, pp. 274–320.

McLachlan, G.J. and Basford, K.E. (1988) Mixture Models, Dekker,
New York, NY.

McLachlan, G. and Peel, D. (2000) Finite Mixture Models, Wiley,
New York, NY.

Montgomery, D. and Runger, G.C. (1994) Applied Statistics and Proba-
bility for Engineers, Wiley, New York, NY. pp. 519–520.

Pittner, S. and Kamarthi, S.V. (1999) Feature extraction from wavelet co-
efficients for pattern recognition tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(1), 83–88.

Ramsay, J. and Silverman, B. (1997) Functional Data Analysis, Springer-
Verlag, New York, NY.

Rand, W. M. (1971) Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical Association, 66 441–
458.

Scott, J.R. (1997) Matrix Analysis for Statistics, Wiley, New York, NY,
pp. 154–157.

Tanaka, Y. and Mori, Y. (1997) Principal component analysis based
on a subset of variables: variable selection and sensitivity anal-
ysis. American Journal of Mathematical and Management, 17(1),
61–89.

Yeung, K.Y. and Ruzzo, W.L. (2001) Principal component analysis for
clustering gene expression data. Bioinformatics, 17(9), 763–774.

Biographies

Shiyu Zhou is an Assistant Professor in the Department of Industrial
and Systems Engineering at the University of Wisconsin-Madison. He re-
ceived his B.S. and M.S. degrees in Mechanical Engineering at the Univer-
sity of Science and Technology of China in 1993 and 1996 respectively, and
a Master’s in Industrial Engineering and a Ph.D. in Mechanical Engineer-
ing at the University of Michigan in 2000. His research interests are fo-
cused on in-process quality and productivity improvement methodologies



584 Zhou and Jin

incorporating statistics, system and control theory, and engineering
knowledge. The objective is to achieve automatic process monitoring,
diagnosis, compensation, and their implementation in various manu-
facturing processes. He is a member of IIE, INFORMS, ASME, and
SME.

Jionghua (Judy) Jin received her B.S. and M.S. degrees in Mechanical
Engineering, both from the Southeast University in 1984 and 1987 re-
spectively, and her Ph.D. degree in Industrial and Operations Engineer-
ing at the University of Michigan in 1999. She is currently an Assistant
Professor in the Department of Systems and Industrial Engineering at
the University of Arizona. Her research focuses on developing a unified
methodology for quality and reliability improvement through the fusion

of statistics with engineering models. Her research expertise is in the areas
of systematic process modeling for variation analysis, automatic feature
extraction for monitoring and fault diagnosis, and optimal maintenance
decision with the integration of the quality and reliability interaction. Her
research is sponsored by National Science Foundation, the Air Force Of-
fice of Scientific Research, the US Department of Transportation, and
Global Solar Energy Inc. She was a recipient of a CAREER Award from
the National Science Foundation in 2002 and a PECASE award in 2004.
She received the best paper award from the ASME, Manufacturing En-
gineering Division in 2000. She is a member of INFORMS, IIE, ASQC,
ASME, and SME.

Contributed by the On-Line Quality Engineering Department


