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ABSTRACT 
 

High dimensional cyclic waveform sensing 
signals are commonly used for manufacturing 
system monitoring. However, the lack of 
effective analysis methods in current monitoring 
systems causes major concerns in production in 
terms of monitoring performance. In this study, a 
generic methodology for analyzing cyclic 
waveform signals is proposed, and a false 
rejection problem in the engine valve seat 
assembly process was used as a case study to 
illustrate the proposed methodology.  
Performance comparison using production data 
has been conducted and the results have 
demonstrated the improvement on the false 
rejection reduction for potential productivity 
improvement. 
 
INTRODUCTION 
 

In modern manufacturing systems, cyclic 
waveform sensing signals are online collected 
from many processes, which conduct repetitive 
operations to produce products. To monitor the 
product quality and process condition, online 
monitoring systems are widely used to monitor 
the features extracted from the waveform 
sensing signals [Wang et al. 2008].  

 
In industrial practice, simple statistical 

features are often used to characterize the 

signal profiles for process monitoring 
[ABC,1997; Grogan, 2002; Knussmann and 
Rose, 1993; Sah and Gao, 2008]. A shortfall of 
those methods is that a large amount of profile 
information contained in the waveform signals is 
not fully utilized. Moreover, the monitoring limits 
for these features used in production are often 
based on trial and error. As a result, the 
monitoring systems often suffer either a high 
false alarm rate or a relatively low detection rate 
for various faulty conditions due to variations in 
material’s properties, manufacturing tolerances, 
etc. 

 
Recent research efforts have been made to 

extract advanced features from the waveform 
signals. For example, in [Koh et al., 1995], 
wavelet features are selected using the Haar 
transform to detect and isolate faults. In [Zhou 
and Jin, 2005], PCA features are automatically 
selected using unsupervised clustering methods 
for fault diagnosis purposes.  In [Mosesova et 
al., 2006], a mixed-effect model is used to 
approximate the signal profile and principal 
component analysis is conducted for data 
dimension reduction. The aforementioned 
literatures assume that the alignment index of 
the signal is available, e.g. signals are aligned 
based on other physical references, such as 
press crank angle in [Koh et al,1995; Zhou and 
Jin, 2005], or the alignment index can be found 
by using statistical functional registration 
methods to align the cyclic waveform signals 
[Mosesova et al., 2006].  

 
The methods found in literature cannot be 

directly applied to our study for the following 
reasons. First, the signals in this study do not 



have available alignment index. Second, when 
applying functional registration methods to align 
the waveform signals, important quality 
measures will no longer be valid and physically 
interpretable. Therefore, a new method for 
monitoring and diagnosis of cyclic waveform 
signals is highly demanded in industrial practice. 

 
In this paper, a general cyclic waveform signal 

monitoring framework is proposed to improve 
the assembly process control for valve seat 
pressing operation in engine cylinder heads.  In 
this framework, wavelets-based signal alignment 
and feature extraction algorithms are developed 
to enhance the monitoring and diagnostic 
capability of the currently used online monitoring 
system. 

  
The rest of the paper is organized as the 

follows. Firstly, the engine valve seat assembly 
process is introduced. Secondly, the proposed 
cyclic waveform signal monitoring framework is 
presented. Thirdly, a false rejection problem in 
the engine valve seat assembly process is 
investigated as a case study. Next, the proposed 
waveform signal alignment and feature 
extraction algorithm will be discussed in detail 
followed by performance validation. Finally, 
summary and future work are provided. 

 
VALVE SEAT ASSEMBLY PROCESS AND 
THE MONITORING SYSTEM 

 
The valve seat assembly process in cylinder 
heads production is performed by a pressing 
assembly operation where a valve seat and 
guide are pressed into the seat counterbore 
pocket and guide bore respectively.  As shown 
in Fig. 1, the seat counterbore and guide bore 
are machined in aluminum cylinder heads with a 
very narrow diameter tolerance to provide the 
amount of interference fit that is required to 
retain seats and guides in the head.  The valve 
seats play a critical role in the longevity of the 
valves and guides.  Once the counterbore in the 
head has been machined for the desired 
interference, the seat is installed by the pressing 
operation.  Fig. 2 shows the valve seat pressing 
machine.  The seat has a radius or chamfer side 
down and is lightly lubricated prior to being 
pressed to prevent cocking and scraping any 
metal off the head as it is being driven into 
position.  If metal gets under the seat or if it is 
not pressed all the way, it will create a gap.  A 
gap forms a heat barrier and/or causes erosion 

in the aluminum section.  This, in turn, could 
lead to premature valve failure.   

 

(a) 

(b) 
 
FIGURE1.  VALVE SEAT COUNTER BORE 
POCKET AND VLAVE GUIDE BORE (A) AND 
CROSS SECTION VIEW (B) 
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FIGURE 2.  VALVE SEAT ASSEMBLY PROCESS 
AND THE MONITORING SYSTEM. 

 
The product quality measures of this process 

are: (1) the gap between the seat bottom and 
the bottom of the pocket, and (2) the proper 
interference fit. However there is no automatic 
sensor technology available to online inspect the 
gap. Therefore, process monitoring is performed 
by online monitoring the load-displacement 
sensing signals for indirectly inferring the 
performance of pressing operation.   



At each cycle of the seat pressing process, 
the force exerted on the ram and the 
displacement of the seat during pressing are 
collected using load cell and LVDT sensor 
respectively; this results in cyclic waveform 
signals corresponding to each cycle of repetitive 
pressing operations.  In practice, press force 
(measured by load cell) is plotted against press 
distance (measured by LVDT);  Fig. 3 shows a 
typical load-displacement profile for the valve 
seat assembly process after removing the initial 
load offset reading (to adjust the initial sensor 
preload to zero). In practice, four predefined 
features (depth, peak, work and force), as 
illustrated in Fig. 3, are used in the current 
online monitoring system: 
o Depth: maximum value of the distance 

transducer (extractable form distance vs. 
time signal). 

o Peak Force: maximum extracted value of 
the force transducer (extractable form force 
vs. time signal). 

o Work: area under entire extracted force vs. 
distance signal.  

o Force: maximum value of the force 
transducer before bottom out (extractable 
form force vs. time signal). 
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FIGURE 3.  A TYPICAL LOAD-DISTANCE PROFILE 
OF THE VALVE SEAT PRESSING PROCESS. 

 
The monitoring system monitors each 

individual feature separately by using multiple 
charts. If any of the features exceeds the 
inspection limits pre-set by the experts, the 
engine cylinder head will be rejected from the 
production line and be subjected to manual 
inspection before the cylinder head is scrapped. 
However, the high false rejection rate is a major 
concern in production since good quality cylinder 
heads are rejected from the production line from 

time to time, which causes considerable 
inspection cost and production loss. With the 
help of plant engineers, some of the rejected 
engine heads were manually inspected and the 
quality reports were recorded along with the 
rejection reports from online monitoring systems. 
The quality inspection records showed that 35% 
of the inspected rejections were falsely rejected. 
Therefore, there is a need to investigate this 
problem and improve the current process 
monitoring practice. 

 
PROPOSED METHDOLOGY 

 
As illustrated in Fig. 4, the valve seat pressing 

operation can be divided into three phases, 
which are (1) initial insertion; (2) slide insertion 
and (3) final insertion, according to their different 
pressing force characteristics involved. 
Therefore, the collected sensing data are high-
dimensional non-stationary signals.  
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FIGURE 4.  SIGNAL PROFILE AND THE PROCESS 
CHARACTERSTICS. 

 
In this study, a new monitoring system 

framework is proposed to effectively extract the 
process information to improve the valve seat 
assembly process monitoring. As the flowchart 
diagram in Fig. 5, the cyclic waveform signal 
analyzer is the core component of the proposed 
monitoring system, which extracts low di-
mensional and physically interpretable features 
from the raw sensing signals, and uses these 
features for process monitoring and diagnosis 
purposes. The proposed cyclic waveform signal 
analyzer consists of the following major 
algorithms: 
o signal alignment algorithm,  
o signal segmentation algorithm, 
o feature extraction algorithm, 
o online process monitoring algorithm, and  
o fault classification algorithm. 
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FIGURE 5.  THE PROPOSED MONITORING 
SYSTEM FOR CYCLIC WAVEFORM SIGNALS.  

 
The decision flow chart of the proposed 

waveform signal analyzer is shown in Fig. 6. At 
the first step, the sensor fault is identified and 
isolated before further signal analysis. At the 
second step, the monitoring features are 
extracted and the monitoring limits are 
constructed to detect possible defects. 
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FIGURE 6.  THE FLOWCHART OF THE DECISION 
PROCESS OF THE PROPOSED MONITORING 
SYSTEM. 

 
The expected outputs from the proposed 

signal analyzer are defect alarm report and fault 
classification results if the same type of the fault 
had occurred before and recorded in the 
database. In this study, we focused on 
development of signal alignment and feature 
extraction algorithms. 

 
INVESTIGATION AND IMPROVEMENT ON 
FALSE REJECTION PROBLEM 

 
In order to identify the root causes of the false 

rejections, a careful evaluation of the rejected 
engine cylinder heads and the corresponding 
signals was performed.  In addition, the 

sensitivities of the monitoring features that 
caused the rejections were analyzed.   
 

Fig. 7 shows the contributions of different 
monitoring features on part rejections, where 
symbol DP denotes the rejects are caused by 
depth and peak force features. Symbol DF 
denotes the rejects are caused by depth and 
force features. As can be seen, 88.2% of the 
rejections are related to depth features. 
Therefore, our major effort is focused on the 
depth feature and its contribution to false 
rejections. 
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FIGURE 7.  THE PARETO CHART OF REJECTIONS 
CAUSED BY THE MONITORING FEATURES. 

 
In the current monitoring system, the depth 

feature is calculated using the maximum reading 
of the displacement transducer during the seat 
pressing process. However, this measure does 
not reflect the actual moving range of the seat 
inside the seat pocket. As a result, when a shift 
occurs at the relative position of the seat pocket 
to the reference position due to LVDT 
movement, the corresponding depth feature may 
exceed the inspection limits. Fig. 8 shows an 
example of two valve seat pressing data at the 
same seat pocket position. The inspection limits 
shown in the figure are lower and upper limits for 
“Depth” feature. Both engine cylinder heads 
satisfy quality requirements. However due to the 
misalignments of displacement signals, the 
depth feature of the rejected cylinder head 
exceeds the inspection limits, which resulted in 
the false rejection. 

 
In order to extract effective features that 

measure the actual travel range of the seat 
inside the seat pocket, a new feature, “aligned 
depth”, is proposed as shown in Fig. 9. The 
“aligned depth” is defined as the distance from 
the contact point, where the seat begins to 
contact the seat pocket, to the position that the 



seat stops. Therefore, the aligned depth is the 
true measure of the seat travel range inside the 
seat pocket. As can be seen, identifying the 
contact point is critical to the “aligned depth” 
feature extraction. Instead of using a predefined 
force threshold to find the contact point, which 
introduces additional variance due to 
manufacturing tolerances of the components for 
interference fit, a wavelet transform based 
contact point detection algorithm is proposed.  
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FIGURE 8. ILLUSTRATION OF THE 
MISALIGNMENT EFFECT OF DEPTH FEATURE ON 
FALSE REJECTION. IN THIS PLOT, BOTH SEAT 
PRESSING PRODUCED GOOD QUALITY ENGINE 
HEADS. 

 

 
 
FIGURE 9.  DEFINITION OF THE PROPOSED 
“ALIGNED DEPTH”  FEATURE, WHICH IS THE 
DISTANCE BETWEEN THE CONTACT POINT AND 
THE MAXIMUM READING OF LVDT.  

 
In the following sections, the detailed 

development of the contact point detection 
algorithm will be introduced. First, a wavelet 
transform is performed using the Haar transform 
[Coswami and Chan, 1999].  Second, the 

signals are aligned according to their contact 
points and the “aligned depth” feature is 
calculated according to the above definition.  
.  

 
Wavelet Analysis for Signal Alignment 

 
In this research, the wavelet transform is used 

to help determine the contact points. In practice, 
the discrete wavelet transform (DWT) is used 
since the signal is discrete-time sampled in finite 
time span. For a square-integrable function 

( )f t , it can be approximated by the sampled 

signal vector pℜ∈Y . As shown in Eq. (1), the 
DWT is a linear transform of the signal using 
wavelet transform matrix pm×ℜ∈W : 

WYC = ,                         (1) 
where mℜ∈C  denotes the wavelet coefficients 
vector using  0j  level decomposition in DWT. 

]',,...,,[ 1200
cDcDcDcAC jj= , where 

0j
cA  

denotes the approximate coefficients for 
decomposition level 0j , 0,...,2,1, jkk =cD  
denotes the detail coefficients for decomposition 
level k . 
 

In this research, the Haar transform is used to 
detect the contact point of the valve seat 
pressing process because it has the following 
merits [Koh et al., 1999] to make it particularly 
attractive. Firstly, the Haar transform is an 
efficient transformation algorithm that can satisfy 
the computing speed requirement for the on-line 
monitoring purpose.  Secondly, the Haar 
transform has the shortest support length among 
all wavelet basis functions, which provides the 
highest resolution in the time domain to get the 
accurate position of contact point. Thirdly, the 
Haar transform is effective on detecting the 
signal change points, which are closely related 
to the contact points of valve seat pressing 
operation.  

 
Contact Point Detection 

  
An automatic contact point detection algorithm 

has been developed to detect the contact point 
and align the signals according to its contact 
point for “aligned depth” feature extraction. The 
flowchart of the algorithm is shown in Fig. 10.  
Firstly, at j -th level ( 01,...,j j= ), the local 
maximums of the detail coefficients j

kd  are 
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calculated within the given data window which 
depends on the application ( k denotes the index 
of the detail local maximum coefficient). 
Secondly, at each decomposition level j , the 
time region support [ , ]j j

k ka b of each local 
maximum coefficient is obtained by using the 
algorithm introduced in [Jin and Shi, 1999], 
where j

ka denotes the beginning time index that 
support the coefficient j

kd , while j
kb denotes the 

ending time index that supports the same 
coefficient. Thirdly, candidate contact points 

kC can be found by calculating the overlapped 
time support region across the consecutive 
decomposition levels. 

 I 0

1
],[j

j
j

k
j

kk baC
=

∈ .                     (2) 

In this study, normally there will be two local 
candidate contact points in a force signal, which 
correspond to the points where the seat begins 
to contact the seat pocket and the seat reaches 
the bottom of the seat pocket respectively. 

 

 
 
FIGURE 10.  FLOWCHART OF THE CONTACT 
POINT DETECTION ALGORITHM. 

 
Fig. 11 illustrates an exemplary analysis result 

of the contact point detection algorithm. For 
illustration purpose, two levels of the signal 
decomposition are used. Subplot (a) of Fig. 11 
shows the one sample of the force signal vector, 
Subplot (b) shows the magnitude of the detail 
coefficients at different levels. As can be seen 
from subplot (b) in Fig. 11, at the first level, the 
time region that supports the first local maximum 
point is [4832, 4833]. At the second level, the 
region that supports the first local maximum 
point is [4832, 4835]. Therefore, the initial 

contact point is located at time index 4832. The 
advantage of this analysis is that it is robust to 
process noise and force variation under different 
parts since the proposed method is used to 
identify the signal change points that are truly 
reflect the contact point of starting the valve seat 
pressing operation. 
 

 
 
FIGURE 11.  ILLUSTRATION OF WAVELET 
ANALYSIS OF A TYPICAL FORCE PRESSING 
SIGNAL. 
 
PERFORMANCE COMPARISON OF THE 
PROPOSED “ALIGNED DEPTH” AND THE 
“DEPTH” FEATURES IN CURRENT 
ALGORITHM 

 
Performance comparison has been conducted 

to demonstrate the effectiveness of the 
proposed feature on false rejection reduction. 
Fig. 12 shows the box plot of the “depth” feature 
of the falsely rejected and accepted engine 
cylinder head groups. From subplot (b) of the 
figure, it can be seen that the rejected “depth” 
samples on the right exceed the production 
inspection limits (UL and LL denote the upper 
and lower inspection limits for depth feature, 
respectively). However, these rejected parts, 
which are 35% of the total rejects, were false 
rejection because they all satisfy the manual 
quality inspection requirements.   
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FIGURE 12.  THE BOX PLOT OF ACCEPTED AND 
FALSELY REJECTED “DEPTH” FEATURE 
SAMPLES.  SUBPLOT (B) IS THE LOCAL 
ENLARGED PLOT OF THE REJECTED SAMPLES 

 
Statistical testing is also conducted for the 

“depth” feature between the falsely rejected 
samples and the accepted samples by using the 
following hypothesis test: 

0

1

:

:
reject accept

reject accept

H
H

µ µ
µ µ

=

≠
 

where rejectµ  and acceptµ  denote the mean 
values of the depth feature based on the falsely 
rejected samples and accepted samples 
respectively. The p-value of this hypothesis test 
is smaller than 0.05, which indicates that the 
distributions of the tested depth features are 
significantly different between the falsely 
rejected group and the accepted group although 
cylinder heads in both groups are all in good 
quality. 

 
For comparison, the box plot of the “aligned 

depth” features of the two groups is also shown 
in Fig. 13. Noted that the “aligned depth” 
features in the falsely rejected group are all 
within the equivalent inspection limits. A similar 

statistical test is also conducted, which does not 
show the significant difference on the mean 
values of the aligned depth between these two 
groups. It can be seen that no false reject occurs 
since all the “aligned depth” features are within 
the equivalent inspection limits.  By further 
considering other three features used in the 
current monitoring system, there are still 5% 
samples exceed other inspection limits although 
the aligned depth feature of these samples are 
all within the equivalent inspection limits. 
Therefore, it is concluded in this case study that 
35% false rejects was reduced to 5% through 
the improvement of the monitored depth feature. 

 
Moreover, as shown in Fig. 13, the current 

inspection limits are much wider than the sample 
range of the “aligned depth” features. Therefore, 
these limits can be set more effectively (for 
example, reduce the width of the inspection 
limits to more sensitively identify parts with a 
smaller gap than the current inspection limits, 
which can also further improve the detection 
performance of the current process monitoring 
system. 
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FIGURE 13.  THE BOX PLOT OF THE ALIGNED 
DEPTH FEATURES. NOTED THAT NO FALSE 
REJECT OCCURS USING THE PROPOSED 
“ALIGNED DEPTH” FEATURE.  
 
SUMMARY 
 

A generic monitoring system framework is 
proposed in the paper, which aims to use online 
sensing waveform signals to effectively monitor 
the engine valve seat assembly processes. By 
investigating the current monitoring system, a 
severe high false rejection problem was found. A 
statistical hypothesis testing was conducted, 
which proved that the currently defined “depth” 
feature could not truly reflect the actual 
assembly operation condition due to the 



inevitable misalignments of sensing signals. For 
improving the monitoring performance and 
reducing the false rejects, a new “aligned depth” 
monitoring feature is first time proposed in the 
paper. For the purpose of extracting aligned 
depth features, a new signal alignment algorithm 
is proposed in the paper by aligning the signals 
using wavelet analysis of signal change points. 
The new algorithms have been validated 
through the real world production data. The 
results show that the proposed new algorithms 
can significantly reduce the false rejects of the 
total rejected parts. Moreover, the new 
algorithms also show the potential benefit to 
improve system detection power by reducing the 
variability of new monitoring features under the 
normal working condition. Some future work will 
be further investigated, for example, the 
development of fault classification algorithms to 
identify the root causes of the detected faults 
and conducting design of experiments tests to 
identify the diagnostic features for gap failures. 
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