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Aggregated signals are referred to as the measurements of system-level responses generated by the multiple operations embedded in
a system. While an extensive literature exists on the analysis of general signal profiles, limited research has been performed on the
topic of how to map features of the aggregated signals to the responses of individual operations, which is important for individual
operation performance monitoring and assessment. In this paper, a two-step mapping algorithm is developed to obtain those mapping
features using a mutiscale wavelet analysis integrated with statistical hypothesis testing and engineering knowledge. It is shown that
multiscale wavelet analysis 1s effective for mapping aggregated signals to the embedded individual operations that generate localized
time—frequency responses. This algorithm is further demonstrated in a stamping process, in which the extracted wavelet coefficients
of aggregated press tonnage signals are explicitly mapped to individual or a few contributing embedded operations. The mapping
allows for efficient monitoring and quality assessment of the embedded operations based on the aggregated signals, thereby avoiding
installing additional in-die sensors in all operations.

[Supplementary materials are available for this article. Go to the publisher’s online edition of IIE Transactions for the following free

supplemental resource: Appendix]
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1. Introduction

In general, a complex system consists of multiple embedded
operations. Although the separate measurement of indi-
vidual operation responses can provide explicit diagnostic
information for system monitoring, it is often not possible
or economic to install individual sensors at each opera-
tion. In practice, a commonly used method is to measure
the combined response of embedded operations; this com-
bined response is called an aggregated signal. Therefore, it
is desirable to know whether it is possible to monitor the
performance of individual operations based on available
aggregated signals.

For example, in a transfer/progressive stamping or forg-
Ing process, strain gage sensors are usually installed on press
machines to measure the total press tonnage force (i.e., an
aggregated signal), which i1s comprised of the forces of all
embedded operations. In contrast, in-die sensors, which are
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installed inside the dies of individual operations to measure
their respective forces, are very rarely used in real-world
production, because of the extra costs for purchasing, in-
stalling, inspecting, and replacing the sensors, as well as
the accompanying complexity of die changes. Similarly,
In a computer network, a border router is usually avail-
able to collect aggregated packet traffic data (i.e., an aggre-
gated signal) corresponding to the total number of queries
from all relevant nodes in the network, while the number of
queries from individual nodes is not separately measurable.
A third example is a transportation network in an urban
area, where traffic flow is usually measured at certain main
intersections (1.e., an aggregated signal), but not along each
branch road whose traffic flow passes through the inter-
section and which contributes to its overall traffic flow. In
these three examples, it is highly desirable to have the ability
to use aggregated signals to monitor and detect abnormali-
ties in individual manufacturing operations, network nodes
and branch road traffic flows, for the purpose of quality as-
surance in stamping and forging, computer network intru-
sion detection and better route planning and traffic control,
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respectively. There is a substantial need for research on how
to map features of system-level aggregated signals to the re-
sponses of embedded operations. The advantage of using
such mapping features is improved diagnostic capabilities
for system monitoring, which can be shown in two ways:
first, when there is a one-to-one mapping between a feature
and an individual operation; this feature can be used to
monitor the operation exclusively. Second, even for some
operations lacking dedicated features, an explicit mapping
between a feature and some of the operations, rather than
all of the embedded operations, can expedite the search for
the specific failures in operations.

In this research, we focus on systems consisting of multi-
ple embedded operations, each of which generates a local-
ized “time—frequency” response. In other words, in order to
allow multiple embedded operations to be monitored sep-
arately based on the aggregated signals, these operations
must engage in the system at different time segments (1.e.,
possibly overlapping but not identical time periods) and/or
have their energy concentrated within overlapping but not
identical frequency bands. This characteristic is shared by
the systems in the previous three examples. Specifically, past
research in stamping and forging process control (Jin, 2004;
Jin and Shi, 2005) has found that the actual working range
of each individual operation only occupies a limited, mostly
different, portion of the entire time cycle of the aggregated
signal, and each embedded operation has its energy con-
centrated in mostly different frequency bands. Likewise, the
number of queries from the individual nodes of a computer
network also forms localized time—frequency signals due to
the differences among the individual nodes in the network
in terms of usage time and usage patterns (Barford et al.,
2002). Similar phenomena can be observed in the traffic
flow passing through an intersection from branch roads
(Guo and Jin, 2006).

An extensive literature exists on the analysis of signal
profiles and the extraction of features for system monitor-
ing and diagnoses (Woodall et al., 2004). Generally, mul-
tivariate statistical methods, such as Principle Component
Analysis (PCA) (Johnson and Wichern, 2002), PCA-based
pattern recognition (Ceglarek and Shi, 1996), factor anal-
ysis (Apley and Shi, 2001; Johnson and Wichern, 2002),
variance component analysis (Rao and Kleffe, 1988; Zhou
et al., 2003) and signature metrics approaches (Kibarian
and Strojwas, 1991; Gardner et al., 1997), focus on an-
alyzing signals in the time domain. Fourier transforms
(Bracewell, 2000) decompose signals in the frequency do-
main, but these are applicable only to stationary signals
and not to localized time-frequency non-stationary sig-
nals. Short-time Fourier transforms can be used to analyze
localized time-frequency signals but at a fixed resolution
(or scale) in both the time and frequency domains. In con-
trast, wavelet analysis (Mallat, 1989) 1s able to decompose
a signal at multiscale time—frequency domains, and the re-
sulting wavelet coefficients capture localized signal features
at different time segments and different frequency bands.
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Most past research on the application of wavelet analy-
sis to system monitoring and diagnosis resides in the gen-
eral field of profile or functional data monitoring, which
aims to develop control charts for different types of pro-
files, including linear (Stover and Brill, 1998; Kang and
Albin, 2000; Kim er al., 2003; Mahmoud and Woodall,
2004; Mahmoud et al., 2007) or non-linear profiles (Young
et al., 1999; Walker and Wright, 2002; Ding et al., 2006),
profiles that can be represented in a parametric (Stover
and Brill, 1998; Kang and Albin, 2000; Kim et al., 2003;
Mahmoud and Woodall, 2004; Mahmoud et al., 2007) or
non-parametric (Winistorfer et al., 1996; Gardner et al.,
1997; Fan and Lin, 1998) forms, and complex waveform
profiles that have rich information in a localized time do-
main (Jin, 2004), or in both localized time and frequency
domains (Jin and Shi, 1999, 2001; Lada et al., 2002). In this
area of research, wavelet analysis 1s often used for signal
denoising, profile fitting or feature-preserving data com-
pression (Jin and Shi, 1999).Very little research, however,
has been published on the application of wavelet analysis
to the profile analysis of aggregated signals for embedded
operation monitoring. This opens a new research area on
how to map features (i.e., the wavelet coefficients) of the
aggregated signals to the embedded individual operations.

This paper uses a multistage progressive stamping pro-
cess to illustrate the development of a data analysis method
for exacting features of aggregated signals that can be
mapped to the corresponding embedded operations. In the
literature of stamping signal analysis, the Discrete Wavelet
Transform (DWT) approach has been successfully used for
multiscale feature extraction (Jin and Shi, 1999). Therefore,
this paper will also apply the DWT approach to the aggre-
gated stamping force signals in the first step of data analysis.
Then, the extraction of mapping features is performed by
identifying the wavelet coefficients corresponding to each
individual operation.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces data collection and the characteristics
of the collected signals. Section 3 presents the DWT ap-
proach for the decomposition of the collected signals into
wavelet coefficients and Section 4 proposes a method to
map the wavelet coefficients of the aggregated signals to the
corresponding embedded individual operations. Section 5
provides a case study and finally conclusions are drawn in
Section 6.

2. Data collection and signal characteristics in multistage
progressive stamping processes

Two types of signals are collected in order to establish the
mapping relationship between the aggregated signals and
the individual contributing operations embedded in a pro-
gressive stamping process. One is the aggregated total ton-
nage signals, which can be collected continuously during
production. The other is the individual operation tonnage
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force signals, which are collected offline using specially de-
signed physical experiments. This section introduces the
progressive stamping process, the collection of these two
types of signals and the signal characteristics.

2.1. Online collection of aggregated stamping tonnage
signals

A progressive stamping process requires several sequential
operations to produce one part, hence the use of the term
“multistage” process. This process adopts a progressive die
in which the sequential operations can be performed at
different stations through multiple embedded dies. During
this process, an automatic feeding device pushes the raw
material strip through all of these stations by advancing
the strip to the next station at each press stroke. At each
station, one or more operations are performed, and at the
final station, a finished stamping part 1s formed. The pro-
duced part is expected to meet the design specifications
on both shape and dimension. For example, Fig. 1 shows
a progressive stamping process for producing doorknobs.
The process 1s equipped with a progressive die having six
stations. At these stations, the following operations are se-
quentially performed: notch and cutoff (together at one sta-
tion); blanking; draw; redraw; second redraw; and bulging.

In a progressive stamping process, strain gage sensors are
usually installed on the linkages or columns of a stamping
press. These are called “press sensors,” and they are used
to collect the aggregated total press tonnage force signals
that reflect the overall performance of all of the embedded
individual operations. For example, in Fig. 1, four press
sensors are installed on the stamping press (one on each
press column), and the summation of the signals measured
by these four sensors is an aggregated signal contributed
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to by all seven individual operations. One sample of the
aggregated signal is given in the top-right panel of Fig. 1.

In this paper, the aggregated tonnage signal is denoted by
a random vector, F = [F,, ..., F,]7, where n is the number
of data points measured within the cycle of a press stroke
(1.e., from the time that the press moves down to the die,
through the time of the executions of the operations, to the
time that the press is lifted up) with each data point corre-
sponding to a sampling time unit. This aggregated signal is
the summation of the individual operation tonnage forces
plus the 1nitial support force of the cushion that is located
under the lower bed of the progressive die, as shown in Fig.
1. Unlike the aggregated signal, the signals for these individ-
ual operation tonnage forces and the initial cushion force
are not measurable during continuous production. They
are denoted by F' = [F!, ..., F']'(i =0, ..., m), where m
is the number of operations, i = 0 represents cushion, and
“~” implies that the signals are not measurable during con-
tinuous production. Therefore, the physical relationship be-
tween F and F' is

F=Zii"". (1)

2.2. Offfine collection of individual operation signals
through physical experiments

Although the individual operation signals are not mea-
surable during continuous production, they can be mea-
sured using the press sensors through a designed offline
experiment that has been proposed by Jin and Shi (2005).
In this paper, the individual operation signals obtained
from the offline experiment are denoted by random vectors
F'=[Fi,...,F]" (i =0,..., m). Figure 2 shows one ex-
ample of the individual operation signals F' (i =0, ..., 7),
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Fig. 1. A multistage progressive stamping process for doorknob production.
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Fig. 2. An example of the individual operation signals F' (i =0, ...

in Fig. 1.

collected in the experiment. Furthermore, it is reasonable
to assume that the mean vector of F', wg:, is equal to that

of F', wiunder the same working conditions, that is

Rpi = Pfi. (2)

By combining Equations (2) and (1), the mean vector of
the aggregated signal F, ug, can be expressed as

HF = Z M.
i=0

In order to map features of the aggregated signal to
the embedded individual operations, aggregated signals
are also collected from continuous production under the
same working conditions as the offline experiment. Fig-
ure 3 shows one example of the aggregated signals. When
comparing the aggregated signal F in Fig. 3 and the in-
dividual operation signals F' in Fig. 2, it is important to
note that searching for the mapping features only in the

(3)

, 7) obtained from the offline experiment at the stamping process

time domain of the aggregated signal is possible only to a
very limited extent for each individual operation because
the aggregated tonnage force at a time unit £ may be in-
fluenced by the corresponding tonnage forces at many or
all of the individual operations. For example, the peak
tonnage force in the aggregated signal in Fig. 3, Fjog, 1S
influenced by the tonnage forces at all seven operations,

log»f = 1,...,7, and the tonnage force of the cushion,
Fﬂ,g; that is, ur, = Z;?:o 7l F;-ﬂﬂaccording to Equation (3).
Thus, monitoring Fog 1s ineffective for assessing individual
operation performance.

While a time-domain analysis of the aggregated signal
alone may not be adequate to identify the mapping features
for individual operations, an integrated analysis that fully
considers the rich local information of the signal in both the
time and frequency domains can serve this purpose effec-

tively. This time—frequency analysis can be achieved by the
use of a DWT, which will be introduced in the next section.
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Fig. 3. An example of the aggregated signals F obtained online from continuous production at the stamping process in Fig. 1.
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3. Signal decomposition based on a DWT

Past research on stamping processes provides abundant ev-
idence that individual operations are reflected in a localized
time—frequency domain of the aggregated tonnage signal.
In the time domain, Jin (2004) and Jin and Shi (2005)
found that the working range of each operation is only a
limited portion, called a segment, of the entire cycle of the
aggregated signal. In the frequency domain, it is known
from physical design knowledge that the energy of each
operation 1s concentrated in a certain frequency range.
For example, notch, cutoff and blanking operations cor-
respond to a high-frequency range, but draw and bulging
operations correspond to a low-frequency range. There-
fore, the significant advantage of using a DWT is that
the multiscale wavelet coefficients of the aggregated sig-
nal are localized not only in the time domain, but also in
the frequency domains and this leads to an additional sep-
arability among the operations at different scales. A brief
review of the DWT approach can be found in Li et al
(2007).

In this paper, a DWT is performed on the aggregated
signal F by taking the product of a DWT matrix, W, and
F, thus producing a set of wavelet coefficients, @, that is

6 = WF. (4)

Here, W 1s determined by choosing a particular
wavelet basis and a maximum decomposition level
d. Because a wavelet basis has a finite length, the
wavelet coefficients 6 are localized in the time do-

main. Moreover, the composition of the wavelet coef-
ficients vector 0 is 6 = [0}, 07, .. B} ...,0[]", where
81 =001, 5815 oY s I = Lacoindi @ 05 (] =
l,...,d)are called the detail coefficients at decomposition
level j, and 0, are called the approximation coefficients at
decomposition level d. Because each decomposition level
corresponds to a certain frequency range, the wavelet coef-
ficients at each level are localized in the frequency domain.

To map the wavelet coefficients of the aggregated sig-
nal to individual operations, the same DWT is also ap-
plied to the individual operation signals collected from the

offline experiment in Section 3, F', and the correspond-

ing wavelet coefficients, ', i =0, ..., m, are obtained,
that 1s

' = WF', (5)
where 0° = [(0;)", (0)", ..., (@),...,(@)T]" and 6’ =
B 15 x5 Bnio e Big)

Furthermore, because of Equation (3), the relationship
between a wavelet coefficient of the aggregated signal, 6, , ,
and the corresponding wavelet coefficients of individual
operation signals, 6}, , can be expressed as
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Fig. 4. Three fundamental components of the method for map-
ping aggregated signal features to embedded operations.

4. Mapping wavelet coefficients of an aggregated signal
to embedded operations

As shown 1n Fig. 4, there are three fundamental compo-
nents in the method for mapping aggregated signal features
to the embedded contributing operations. These include the
collection of signals, discussed in Section 2; the DWT of
the signals, discussed in Section 3; and a two-step mapping
algorithm, which will be discussed here in Section 4.

The first step of this mapping algorithm is to identify the
local frequency range of each individual operation. This
is achieved by applying a power spectrum analysis to the
wavelet coefficients of the individual operation signals col-
lected by offline experimental tests, 1.e., ', and identify-
ing the energy-concentrated wavelet decomposition levels.
Then, for each energy-concentrated level of an operation,
the second step of the mapping algorithm is to select those
wavelet coefficients at this level that are relevant to this
operation in the time domain. The second-step selection
is physically justified by the fact that an individual station
In the progressive die is engaged only at a particular local
time segment of a press stroke cycle; thus wavelet coeffi-
cients falling outside the time segment are not relevant to
the operation performed at this station.

4.1. Hdentification of local frequency ranges for individual
operations

[t 1s known from physical design knowledge that each in-
dividual operation may generate signals localized within a
certain frequency range. For example, notch, cutoff and
blanking are high-frequency operations, but draw and
bulging are low-frequency operations. After the frequency
range of an operation is identified, only those wavelet coef-
ficients of the aggregated signal that fall into this frequency
range can be used to assess the performance of this corre-
sponding operation.
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operation, with levels 2, 3 and 4 being the energy-concentrated
levels for this operation.

There is a correspondence between frequency ranges and
wavelet decomposition levels. Thus, the identification of
the possible frequency range for each individual operation
can be translated into a search for the wavelet decompo-
sition levels on which the energy of an operation concen-
trates. These levels, called energy-concentrated levels, can
be identified through a wavelet power spectrum analysis. In
this analysis, first, the total energy of an individual oper-
ation signal F' is projected onto different wavelet decom-
position levels. Specifically, the projected energy at level
jell,...,d,d}, denoted by Hf}, is computed by an in-
ner product of all the wavelet coefficients at this level, i.e.,
Hj,- — (ﬂj-)Tﬂj. The relative projected energy at level j 1s de-
fined as the projected energy H', normalized by the total
energy of the signal, that 1s

i\Tgi
(0) 0’
d' Fx Lt
Next, the energy-concentrated level, denoted by r', is all the

levels with a relative projected energy larger than a certain
threshold ng, that 1s

r' = {j|RH; =>N0s 7 € ULy vinyd; d’)}, (6)

where 7o 1s the noise energy level due to natural process
variation and no = 10% for a typical stamping process. For
example, Fig. 5 gives a plot of the relative projected en-
ergy at levels j € {1,...,d,d'} for the “blanking” opera-
tion (i = 3) of the stamping process in Fig. 1. The energy-
concentrated levels for blanking are identified as levels 2, 3,
and 4, i.e.,r’ = {2, 3, 4).

Through the power spectrum analysis, we can divide
the wavelet coefficients of the aggregated signal into two

R gy
H, =
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categories for each individual operation i: those that be-
long to the energy-concentrated levels of operation i, 1.e.,
0. = {0,|j € r'},and those thatdo not, i.e., 8\, (the com-
plement of @ with respect to #). It is physically justified
that the wavelet coefficients in #\@,, must be irrelevant to
operation i and @, contains all possibly relevant wavelet
coefficients. Furthermore, considering the time-domain lo-
calization property of each individual operation, not all co-
efficients in @, are relevant to operation i. Therefore, there
is a need to further formulate a procedure to select the truly
relevant coefficients from 0., which will be discussed in the
next section.

4.2. Selection of relevant wavelet coefficients for individual
operations in the time domain

Past stamping research has revealed that each individual
stamping operation has a localized working range in the
time domain. Therefore, even if a wavelet coefficient of the
aggregated signal 1s at an energy-concentrated level of an
operation, the coefficient may not necessarily be relevant
to this operation unless the time segment covered by this
coefficient is within this operation’s working range. For ex-
ample, Fig. 6 plots the wavelet coefficients of the aggregated
signal at level 2, which is an energy-concentrated level of
blanking. To determine whether all these coefficients are
relevant to blanking, the wavelet coefficients of the offline
collected blanking signal are also plotted. It can be seen that
the two sets of wavelet coefficients closely match within the
interval indicated by the dash-lined box, which corresponds
to the working range of the blanking operation, which is
known from engineering design.

The problem of selecting relevant wavelet coefficients of
the aggregated signal of an embedded operation can be
equivalently solved by mapping each wavelet coefficient
to 1ts “contributing” operations. For a wavelet coefficient
0;.n,, the contributing operations are defined as a set of
operations M(6;,,) € {0, ..., m} such that:

an
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Fig. 6. Comparison of level 2 wavelet coefficients of aggregated signal and those of offline collected blanking signal, indicating that
the two sets of wavelet coefficients within the working range of the blanking operation closely match.
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Note that M(6; ,,) may be an empty set, indicating that
6;.n, 1s not affected by any operations except process noise.

Based on the result of Section 4.1, it i1s known that be-
cause 6} ,, is a coefficient at level j, it cannot be affected
by those operations whose energy does not concentrate
on level j, i.e., if i € M(8;,,), then j € r'. This implies
that the search for the contributing operations of 6, ,,
does not need to be conducted throughout all the opera-
tions, i.e., {0, ..., m}, but only in a sub-space of {0, ..., m},
which contains all the operations whose energy concen-
trates on level j. This sub-space is denoted by I'(6; ,,), i.e.,
F@.)=1{iljer,ie(,...,m}

To find the contributing operations M(; ,,) in the sub-
space I'(6; », ), a hypothesis testing procedure is formulated,
which integrates engineering design knowledge with statis-
tical testing. Specifically, for each tested set I''(6, ,, ), where
I''(6).n,) is a subset of T'(8;,,), 1.e., T'(6;,,) S T(0),,), a
hypothesis testing is performed to test the equality of two
means: the mean of the wavelet coefficient for the aggre-
gated signal, i.e., 16, and the mean of the sum of the

wavelet coefficients for the individual operation signals in

this tested set, 1.e., Mo, where
Om =D Oy
iel’ (f}”

If the testing cannot reject the hypothesis of two means
being equal, then I''(6; ,,) 1s considered as the set of con-
tributing operations for 6; , , 1.e., M(6,,,) = T'(0;x,).

The hypothesis testing procedure includes the following
three steps:

Step 1. Define the test hypotheses, that 1s
Ho: ey, = ne),
Hi: o, # ko, (7)

Step 2. Define the test statistic (¢ statistic), that is

ke, — Mo,
) ) ?

where the sample means and sample variances, 1.€.,
6, s, 52 , can be estimated based
. 6)n;

» 04, and 67,
on samples of the aggregated signal collected on-
line and samples of the individual operation signals
collected offline using the experiment in Section 3,
and K 1s the sample size.
Step 3. Determine the decision rule, that 1s

I(aj.u;) = (8)

if 1(6,,,) > tr, then Hy is rejected. (9)

In other words, if #(6;,,,) < fr, then we cannot reject the
hypothesis that I''(6; ,, ) is the set of contributing operations
for 6., 1.€., M(6;.,,) =I'(6n,)

From a pure statistical point of view, a statistical thresh-
old for the decision rule can be specified as £ = ty/2.,

621

for a given significant level «, i.e., the upper «/2 per-
centage point of a ¢ distribution with v degrees of free-

dom, where v = (K + 1)(59” + a; )2/(% o g; )_

(Montgomery, 2005). Because the mdlvldual Gperatlon Sig-
nals are independent, the wavelet coefficients for one signal
are independent of those for another signal. Thus

. Z )
g5 = :
Oy = 6).n,
i€l (6)))

Based on a reasonable assumption that the variance of a
wavelet coefficient of the aggregated signal 1s equal to the
variance of the corresponding wavelet coefficient of each

individual operation signal, i.e., &i_ oﬁ,
)
65 = D(T'0;n))35, . (10)
g |
where D(e) 1s the cardinality of a set. Thus, v =

(K + 1)(1 + D(X'(O;.0,))*/(1 + D(T'(8),))) 2

From an engineering point of view, it i1s meaningful to
conclude only that the two means in the hypothesis test-
ing (7) are different when their difference exceeds natural
process variation (1.e., the ng defined in Section 4.1). Based
on this consideration, an engineering threshold, ¢, is pro-
vided in Proposition 1. (See the online Appendix for the
derivation).

Proposition 1. An engineering threshold for the decision rule
in Equation (9) is

& = \/noKE/(1+m), (11)

where no (natural process variation ) is available from design
and & is a “selected” signal-to-noise level.

The selection of an appropriate & value is discussed as
follows. Because 79 and m are fixed for a particular stamp-
ing process and K 1s also fixed after the offline experiment 1s
completed, here & 1s the only parameter that can be adjusted
to make the engineering threshold statistically meaningful.
Specifically, if

£ = £ = ty2.0V/ (1 + m)/(no K). (12)

then the equality of the engineering and statistical thresh-
olds, i.e., tf = £}, is achieved. An interpretation of this re-
sult 1s that we should consider those wavelet coefficients
with signal-to-noise ratios no less than & to be reliable
mapping features, but those with lower signal-to-noise ra-
tios to be unreliable because they contain too much process
noise and are thus not statistically meaningful features.
In addition, Equation (12) also reveals the relationship
between the signal-to-noise ratio & and the design pa-
rameters 79, m and K. As an example, Fig. 7 plots the
& values with respect to different o values for a partic-
ular stamping process with o = 10%, m =4 and K = 6.
Whena = 0.1, & = 5.2, which means that the search proce-
dure will only map wavelet coefficients with signal-to-noise
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Fig. 7. A decreasing trend between signal-to-noise ratio and sig-
nificant level for a stamping process with no = 0.1, m = 4 and
K =6

ratios higher than 5.11, 5.16 and 5.22, respectively for
D(I'(6;4,)) =1, DI'(6;,)) =2 and D(T'(6;,,)) =3 to
individual operations, while other wavelet coefficients are

considered to correspond to noise at the significant level
=\l

S. Case study

A case study is performed on the stamping process in Fig.
1. Six samples (i.e., K = 6) for the aggregated tonnage sig-
nals were collected online during continuous production,
and six samples for each individual operation signal were
collected offline based on the experiment in Section 3.

The procedure in Fig. 4 was followed.

First,a DWT (DB4 wavelet basis and maximum decom-
position level d = 5) was performed on the samples of the
aggregated and individual station signals, and the corre-
sponding wavelet coefficients were obtained, respectively.

Second, the wavelet power spectrum analysis was ap-
plied to each operation and the relative projected energy
at wavelet decomposition levels j € {1,...,5, 5} is plot-
ted in Fig. 8. By using no = 10% as the noise energy level,
the energy-concentrated wavelet decomposition levels can
be identified as r’ = {5’} for cushion, r' = {2, 3, 5} for
notch, r* = {2, 3, 5} for cutoff, r’ = {2, 3, 4} for blank-
ing, r* = {5’} for draw, r’ = {5} for redraw, r® = {5’} for
second redraw and r’ = {5’} for bulging. Then, we can
identify a sub-space of operations, in which we can search
for the contributing operations for each wavelet coefficient
of the aggregated signal. This search for a sub-space for
each coefficient is identified to be I'(6, ,,) = {1, 2, 3} (n; €
{1,..., N2}) for all detail coefficients at level 2, I'(63,,) =
{1, 2, 3} (n3 € {1, ..., N3}) for all detail coefficients at level
3, T(64.,,) = {3} (ng € {1, ..., Ng}) for all detail coefficients
at level 4, T'(6s5,.) ={1, 2} (ns €{1,..., N5s}) for all de-
tail coefficients at level 5 and T'(6s ;) = {0, 4, 5, 6, 7}
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Fig. 8. Wavelet power spectrum analysis for each individual op-
eration, with energy-concentrated levels indicated by solid dots.

(ns € {1,..., N}) for all approximation coefficients at level
3.

Third, for each subset of T(fh.)= {1, 2, 3], 1e,
I(&5;) € {{1}: 12} 13}, {1, 2}, {1, 3}, 12, 3], {1, 2, 3]}, the
hypothesis testing in Equations (7) to (9) was performed,
and the contributing operations of 6, ,, were found. This
creates a mapping between 6, ,, and the contributing op-
erations, as shown in Table 1. For example, 65 19, 6529 and
0, 21 are mapped to notch; 65 26, 62 27 and 65 »g are mapped
to blanking; and 6, 59 1s mapped to both blanking and cut-
off. Similarly, the mapping between 63 ,, (also 65 ,.) and
the individual operations can be found, as given in Table 1.

The results in Table 1 lead to effective strategies in process
monitoring and sensor placement in the stamping process.
Specifically, because some wavelet coefficients of the aggre-
gated signals are dedicated to a specific operation, including
e.g., 0s 12, 05 13, O5 14 and Os ;5 being dedicated to cushion;
0> 19, 6220, 6221 and 63 ;9 being dedicated to notch; and
92'2.5, 9212’;, & 28, 03 15 and 6'3117 being dedicated to blanking,
these coefficients can be used to monitor the performance
of the corresponding operation exclusively. This allows for
the quality assessment of the individual operations of cush-
ion, notch and blanking, based on the aggregated signals
from press sensors, thus avoiding the installation of ad-
ditional in-die sensors in these operations. Furthermore,
for those individual operations lacking dedicated wavelet
coefficients such as cutoff, two draws or bulging, Table 1 ex-
plicitly shows how those operations are combined to affect



Mapping aggregated signal features

Table 1. Mapping of the wavelet coefficients of the aggregated sig-
nal to the operations notch, cutoff, blanking, cushion, 3-draws
(draw, redraw and second redraw together) and bulging; the
wavelet coefficients not shown here cannot be mapped to any
operations, 1.e., they correspond to process noise
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the selected mapping wavelet coefficients, specifically, cut-
off 1s combined with blanking, three draws are combined
with cushion and bulging, bulging is combined with cush-
1on and three draws. This explicit mapping relationship can
still help expedite the search for specific failure stations,
even though the dedicated wavelet coefficients cannot be
found for those operations. Additionally, it can also help
identify the minimum number of additional in-die sensors
that are especially needed, such that those operations can
be effectively separated so as to enable individual operation
performance monitoring.

Verification of the results in Table 1 was conducted by
checking whether the time segment involved in computing
each wavelet coefficient is within the working range of the
operation to which this coefficient is mapped. The verifica-
tion includes three steps:

Step 1. Identify the working ranges of the stamping oper-
ations through engineering design knowledge. De-
tails of the identification procedure can be found
in Jin and Shi (2005) and the results are shown in
the second row of Table 2.

Identify the time segment involved in computing
each wavelet coefficient in the first column of Ta-
ble 2 (same wavelet coefficients as those in Table 1).
The identified time segments are shown in Table 2.
For example, in computing 6, 19, all points in the
aggregated signal within the segment [55 76] are
used.

Step 2.

Table 2. Working ranges of individual stamping operations and time segments involved in computing wavelet coefficients

Working range of each operation (in time units)

Time segment of Cushion Notch Cutoff Blanking 3 draws Bulging
wavelet coeff. (entire signal ) [6470] [106 113] [100 113] {275113] [93 187]

62.19 55 76]

6,20 59 80]

02,21 63 84]

02,26 83 104]

62,27 87 108]

6> 2 91 112]

o (95 116] 95 116]

63.10 [31 80]

63,15 71 120]

B e (79 128] 79 128]

03,17 87 136]

Os 6 [1 192] [1 192]

Becr (7 224] (7 224]

Oii's 39 256] (39 256]

s (71 288] [71 288] (71 288]

Os 10 103 300] [103 300] [103 300]

o 135 300] [135 300]

0 > 167 300]

05 13 199 300]

0 i3 231 300]

g 263 300]
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Step 3. Compare the working range of an operation and
the time segment of the wavelet coefficient that is
mapped to this operation. If the working range and
time segment overlap, this wavelet coefficient is a
valid mapping feature for this operation. For exam-
ple, the working range of notch is [64, 70], which
overlaps with the time segment of 6, 9. Thus, 65 19
is a valid mapping feature for blanking. Similarly,
it can be verified that all the wavelet coefficients in
Table 2 are valid mapping features for the corre-
sponding individual operations.

Furthermore, to evaluate the performance of the pro-
posed method in analyzing signals with different profiles,
we conducted two simulations to show the effectiveness of
separating aggregated signals in both time and frequency
domains. In both studies, the aggregated signal, S, i1s com-
posed by two individual operation signals, S} and S, 1.e.,
S=8,+8S,;S; is fixed to be S; = sin(¢), r € [11, 80], and
S| = 0,otherwise.

In the first simulation study, S, = sin(0.37), ¢ > # and
S, = 0,otherwise, where £ 1s given different values, result-
ing in different profiles of S in the time domain. The proce-
dure in Fig. 4 was followed. The result of this study showed
that the less S; overlaps with S, the more wavelet coeffi-
cients can be mapped to S,. Therefore, aggregated signals
consisting of time-localized individual operations can be
effectively separated by applying the proposed method.

In the second simulation study, S; = sin(ct), t > 41 and
S, = 0,otherwise, where ¢ 1s given different values, result-
ing in different profiles of S in the frequency domain. The
procedure in Fig. 4 was followed. The result of this study
showed that the more dissimilar the frequency of S; 1s to
that of S;, the more wavelet coefficients can be mapped
to S;. Therefore, the proposed method can be effectively
used for mapping aggregated signals into individual opera-
tions which generate different localized frequencies in their
response signals.

6. Conclusions

This paper developed a method for mapping the features
of aggregated signals to the embedded individual opera-
tions. A multistage progressive die stamping process was
used as an example to demonstrate the developed method.
The development of this method included three fundamen-
tal components: first, samples of the aggregated signal were
collected online from continuous production, together with
samples of the individual operation signals which were col-
lected offline through a specially designed physical exper-
iment; second, a DWT was applied to the collected ag-
gregated and individual operation signals and the wavelet
coefficients of the signals were obtained; third, a two-step
mapping algorithm was performed to map the wavelet co-
efficients of the aggregated signal to individual operations.

Jin and Li

Specifically, the first step of this algorithm applied a power
spectrum analysis to the wavelet coefficients of the offline-
collected individual operation signals and identified the
energy-concentrated wavelet decomposition levels for each
operation. These energy-concentrated levels correspond to
the local frequency range of the operation. In addition to
being localized in the frequency domain, each operation
is also localized in the time domain. This property is used
in the second step of the mapping algorithm, in which the
contributing operations for each wavelet coefficient were
identified. This two-step algorithm created a mapping be-
tween the wavelet coefficients of the aggregated signal and
the individual operations. The mapping allows for efficient
monitoring and quality assessment of the embedded op-
erations based on the aggregated signals, thereby avoiding
installing additional in-die sensors in all operations.
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