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Massive amounts of data are generated in Distributed Sensor Networks (DSNs), posing challenges to effective and efficient detection
of system abnormality through data analysis. This article proposes a new method for optimal sensor allocation in a DSN with the
objective of timely detection of the abnormalities in a underlying physical system. This method involves two steps: first, a Bayesian
Network (BN) is built to represent the causal relationships among the physical variables in the system; second, an integrated algorithm
by combining the BN and a set-covering algorithm is developed to determine which physical variables should be sensed, in order to
minimize the total sensing cost as well as satisfy a prescribed detectability requirement. Case studies are performed on a hot forming
process and a large-scale cap alignment process, showing that the developed algorithm satisfies both the cost and detectability

requirements.
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1. Introduction

Advances in sensing and computing technologies have lead
to the widespread use of Distributed Sensor Networks
(DSNs) in many areas, such as manufacturing industry,
environmental protection, and homeland security (Ding et
al., 2006). One of the major challenges in the use of DSNs
is to effectively and efficiently analyze the massive amount
of data created by the large number of sensors, so that use-
ful knowledge about the underlying physical system can be
discovered and timely decisions can be made. Since the to-
tal amount of data collected by the sensors in a DSN, even
within a relatively short time period, can be overwhelming,
attempting to analyze all the data simultaneously in a data
fusion center may not be appropriate. This 1s especially true
when a real-time decision is required in response to a catas-
trophic event. In Wireless Sensor Networks (WSNs), not
only is analyzing the large amount of data a serious con-
cern, communicating the data to the fusion center 1s also
a major issue due to a limited communication bandwidth
(Akyildiz et al., 2002). Increasing the bandwidth results in
more power being consumed, thus reducing the lifetime of
a WSN since the sensors in the WSN are usually powered
by batteries that have a limited lifespan.
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While sensing every physical parameter of a system can
minimize information loss, the resulting sensor network
may generate an overwhelming amount of data, leading to
tremendous difficulty in data communication and analysis.
Moreover, it is quite common that the data contains re-
dundant information, such as data collected on two highly
correlated physical parameters. Therefore, it 1s desirable to
study how to optimally allocate sensors in a sensor network;
i.e., how to collect sufficient information from a system at
the minimum sensing cost. This is equivalent to selecting
the minimum number of sensors, if the sensing cost of each
sensor 1s assumed to be the same.

The problem of sensor allocation has been increasingly
investigated in recent years. There are two common re-
search issues: one is to decide where to physically install the
sensors, and the other is to decide the physical parameters
that are to be measured by the sensors. A typical application
area is computer vision, in which the physical locations and
settings of the sensors are selected to achieve the best qual-
ity in object recognition (Tarabanis ef al., 1995). Another
application area is WSNs, which focuses on where to put
sensors so that every physical spot in the investigated area
is within the sensing range of at least one sensor, and every
sensor is able to deliver its data to a base station within 1ts
lifespan at the minimum cost (Dhillon and Chakrabarty,
2003: Mhatre et al., 2005; Xu et al., 2005). Recently, op-
timal sensor allocation for system monitoring, diagnosis,
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and control has become a promising research area in qual-
ity engineering (Shi, 2006). In this area, research has been
focused on sensor allocation, as well as data modeling and
analysis of systems where there is sufficient prior knowl-
edge to be able to quantitatively describe the relationships
among physical parameters (Khan et al., 1998; Ceglarek et
al., 1999; Wang and Nagarkar, 1999; Ceglarek and Khan,
2000; Ding et al., 2003; Liu et al., 2005; Shi, 2006). There
have been few attempts to create general formulations and
solutions for data-driven relationship modeling of physical
parameters, based on which optimal sensor allocation is
discussed.

Generally speaking, optimal sensor allocation is “mis-
sion specific”; that is, where to allocate sensors is closely
related to specific objectives of knowledge discovery and
decision making. In this article, we focus on the important
topic of abnormality detection in a physical system; i.e.,
how to track overall system performance and quickly gen-
erate alarms when there 1s any abnormality. To accomplish
this mission, it is reasonable to believe that not all physical
parameters in a system need to be sensed by considering
their dependence/correlation relationships. For example, if
there 1s a causal relationship between variables X; and X,
e.g., X; 18 a cause of X, and a sensor has been installed
on X;, then it may not be necessary to sense X; because
any abnormality in X; will propagate to X; and may incur
alarms in X;.

An effective way to monitor the performance of a physi-
cal system and detect abnormalities is to build monitoring
control charts on sensor outputs. In a system with p phys-
ical variables {Xi,..., X}, letting @ = {Q,,...,Q,} C
{X1,..., Xp}(g < p) be the subset of variables on which
sensors are installed, then control charts can be constructed
on the outputs of these sensors and out-of-control signals
can be interpreted as signs of system abnormalities. Here,
two types of strategies may be employed to construct the
control charts: one is to build a multivariate control chart
that combines the information from all the sensors, and the
other is to build a control chart for each sensor that results
in a total of g control charts. The second strategy has good
interpretability since it not only flags system abnormali-
ties but also facilitates diagnosis as to where (i.e., in which
specific variables) the abnormalities occur. Therefore, the
second strategy is adopted in this article.

Specifically, we propose a method for optimal sensor
allocation in a sensor network with the objective of timely
detecting the abnormalities occurring in the underlying
physical system. The method involves two steps: first, a
Bayesian network is built to represent the causal relation-
ships among the physical variables in the system; second,
an algorithm is developed to determine which physical vari-
ables should be sensed, in order to minimize the total sens-
ing cost as well as satisfy a prescribed detectability require-
ment (1.e., how soon an alarm should be generated after the
abnormality occurs). In developing this method, we focus
on system abnormalities that are single mean shifts.
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Fig. 1. BN structure of a hot forming process.

2. Bayesian networks in causal relationship
representation

A Bayesian Network (BN) can be used to represent the
causal relationships among the physical variables X =
{X],..., Xy} inasystem. A BN has two components: struc-
ture and parameters (see Fig. 1 for an example). The struc-
ture of a BN 1is a directed acyclic graph; i.e., a set of nodes,
each corresponding to one physical variable, connected by
directed arcs. If there is a directed arc from X; to X, i.e,
X; — Xj, then X; 1s a direct cause (called a parent) of X
and X; is a direct effect (called a child) of X;, where direct
means that the causal influence from X; to X ;18 not medi-
ated through any other variables in the BN. In other words,
the lack of a directed arc between any two variables means
that these two variables do not have a direct cause—effect
relationship; however, they may have one of the following
relationships:

(a) they are dependent/correlated by sharing a common
cause (e.g., X> and Xj in Fig. 1);

(b) one variable 1s an indirect cause of the other (e.g., X
and X;);

(c) they are independent (e.g., X5 and Xj).

Furthermore, if there is a directed path from X; to X 1
e, X; = -+ = Xj, then X; is a direct or indirect cause
(called an ancestor) of X; and X; is a direct or indirect
eftect (called a descendant) of X;. In this article, the sets of
parents, children, descendents and ancestors of a variable
X; are denoted by PA(X;), CH(X;), DE(X,), and AN(X)),
respectively; and a component of each set is denoted by
PAy(X;), CHx(X;), DEi(X;), and AN(X;), respectively.

The parameters of a BN are a set of conditional prob-
ability distributions, P(X;|PA(X;)),j=1,..., p. In this
article, it is assumed that all variables, when the system
runs under the normal condition, follow the standard nor-
mal distribution, and a linear Gaussian parameterization

of the BN is used (Lauritzen and Wermuth, 1989; Korb and
Nicholson, 2003); that is,

Xj =) p(PAX)), X;))PA(X)) + V;. (1)
k=1

In Equation (1), p(-,-) 1s a linear coefficient, called
a path coefficient; p(-,-) € (0,1) because all variables
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Fig. 2. 2-D illustration of the hot forming process.

follow the standard normal distribution. ¥} is In-
2
@ =1—

dependent of PAw(X;), V;~ N(0,07); here, o

Zk 1;_*;-(l'f"A,r{()(’) X;)p(PAr(X;), X;) in order to maintain
unit variance of each variable given the Pearson correlation,
denoted by p(-, -), along the incoming paths. The parame-
terization in Equation (1) is also adopted in path modeling
(Wright, 1921), which has been extensively employed in
social and behavioral sciences.

As an example, Fig. 1 shows a linear Gaussian BN for
a hot forming process with one quality variable (X;: final
dimension of workpiece) and four process variables ( Xs:
temperature, X3: material flow stress, X»: tension in work-
piece and Xs: Blank Holding Force (BHF; Li et al., 2008).
A two-dimensional (2-D) physical illustration of the hot
forming process is given in Fig. 2. The numbers beside the
directed arcs in Fig. 1 are the parameters (i.e., the path
coefhicients).

Generally speaking, the structure of a BN can be ob-
tained from engineering knowledge or learned from data.
One commonly used data-driven algorithm for structure
learning is called the PC (Peter and Clark) alogrithm
(Spirtes et al., 1993), which uses a series of statistical signif-
icance tests of conditional independence. For linear Gaus-
sian BNs, PC uses partial correlation tests. Furthermore,
the parameters (i.e., the path coefficients) in a linear Gaus-
sian BN can be estimated based on the sample correlation
matrix of all variables through multiple regressions (Kline,
2005) or Maximum Likelihood Estimation (MLE). An ad-
vantage of MLE is that it can be integrated with Bayesian
estimation, resulting in a Bayesian maximum a posterior
approach that augments the likelihood with a prior that
gives the initial belief about the parameters before seeing
any data (Buntine, 1996).

Under the linear Gaussian parameterization in Equation
(1), we define, in this article, the component effects and to-
tal effect between two variables X; and X;. Specifically, a
component effect of X; on X, is the effect due to a spe-
cific directed path from X; to X;. It is easy to derive that
the component effect 1s equal m the product of all path
coefficients on the corresponding directed path. The total
effect of X; on X; is the sum of all component effects and
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1s denoted by y(X;, X;). Note that:
= (0, 1) 1if X; € AN (XJ;),
y(Xi, X;) = l
0 otherwise

=7 (2)

Based on Equation (2), it is possible to trace how the fault
in one variable propagates to other variables for a given BN.
Specifically, a single mean shift in X;, 1.e., E(X;) = A; # 0,
will incur a mean shift in X; as follows:

E(X;) = y(Xi, Xj)Ai. (3)

Consequently, the total effect of an ancestor of a vari-
able on this variable can be computed. For example, in
Fig. 1, because there are two different directed path from
X3 to Xy, e, Xs > X5 — X; and Xy — X3 - X, the
total effect of Xy on X; 18 the sum of two component
effects; 1.e., y(Xs, X7) = 0.493 x 0.574 + 0.688 x 0.335 =
0.513. If there is a mean shift in Xy, 1.e., E(X3) = Aq # 0,
it will incur a mean shift of 0.513A4 1n X].

3. Problem formulation of optimal sensor allocation for
system abnormality detection

If the causal relationships among the variables can be
known and represented by a BN, it is possible to trace
how the mean shift A; in a variable X; propagates to any
variable X; in the BN, i, j € {1, ..., p}. Specifically, given
A;, the meanin X; 1s gwen in Equatmn (3). Supposing that
there is a sensor on X;, 1.e., X; € &, then the average run
length of a Shewhart control chart on X; in detecting the
mean shift in X; is (Montgomery, 2001)

1
E(X))) + ¢(—za2 — E(X}))’
(4)
where ¢(-) and z,,, are the cumulative distribution func-
tion and the upper /2 percentile of the standard normal
distribution, respectively, and « is a Type-1 error of the
control chart. If X; is an ancestor of X;, or i = j, then
7(X;, X;) # 0 and it can be assumed without loss of gen-
erality that 7(X;, X;) > 0. Also, let §; be the magnitude of

the mean shift A;: i.e., §; > 0. Thus, for a positive mean
shift A; = §;, Equation (4) becomes

1
1 — ¢ (zay2 — 7 (X, X;)8:)
—3§;, Equation (4) becomes:
]

O(—2a2 — Y(Xi, Xj)(—6:))
|

1= (zep — 7( X0, Xj)8:)

which is the same as Equation (5). In other words, Equa-
tion (5) holds for both positive and negative mean shifts.

X
ARL, (A;) = [ —dlhen =

ARL}" (8;) ~

(5)

for a negative mean shift A; =

ARL}(8)) ~
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Furthermore, it can be shown that ARLIY*" (8;) 1s monoton-
ically decreasing with respect to y(X;, X;), for given o and
0;.
Let Q;, € £ be the sensor such that the total effect of
X; on ;, 1s the largest among all the sensors in £; i.e.,
$2j, = argmaxq .oy (Xj, ;). Then, the control chart on
(2;,has the minimum average run length in detecting §;
among all control charts. Furthermore, in order for the

mean shift §; to be detectable, ARL?"” (6;) must not ex-
ceed an upper bound, 4 RLy(8;), which is set according to

specific domain standards; 1.e., ARL?f“(Si) < ARLy(6;).
It can be shown that this inequality holds if and only if
y(Xi, Q) > n;, where:

(Z.-;g,zz = (1 AHLzu{ﬁa}))‘

O
Therefore, the following definitions can be given under a
BN framework.

Definition 1. A mean shift §; in X; € X is detectable by a set
of sensors, 2, if the largest total effect of X; on the sensors
n @, y(X;, Q;), 1s no less than n;; i.e; p(X;, Qi) > ;.

Definition 2. = {Q;, ..., Q,} is a feasible solution to the
problem of sensor allocation, if the mean shift §; inany X; €
Xisdetectable by ;1.e., y(X;, ;) > n;forVi € {1, ..., p}.

Furthermore, the problem of optimal sensor allocation
can be defined as finding a set of sensors, . in order to

q
min W= ) " w(Q)),
j=1

(6)

nNi —

subject to
VX, ) =m, Yie{l,...,ph

where w(£2;) is the cost of sensor 2.

Taking the hot forming process in Fig. 1 as an ex-
ample, given that « =0.05, §; =3 (( e {l,...,5}), and
ARLy(8;) = 5, then n; = 0.373 by Equation (6). If =
{ X1, X3, X5}, then v ( Xy, Qq.o) = y(X4, X3) = 0.688 > ;.
Thus, by Definition 1, a mean shift of three in Xj is de-
tectable by . Similarly, it can be shown that a mean shift
of three in X;,i =1, 2, 3, 5, is detectable by Q. Therefore,
according to Definition 2,  is a feasible solution to the
problem of sensor allocation in detecting the mean shift of

three at any node in the process. Also, the total sensing cost
1s W= w(X3)+ w(Xs) + w(X)).

(7)

4. Solution to optimal sensor allocation for system
abnormality detection

4.1. Solution based on set-covering algorithms

The set-covering problem is a classic optimization problem
in computer science and complexity theory for resource se-
lection (Cormen et al., 2001). The input to a set-covering
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problem is a finite set Y ={ Y, ..., Y,}; m subsets of Y,
whose union is Y, i.e., |J;_; Sk = Y; and a cost for each
subset, w(Sk). The goal 1s to find a few subsets, with min-

1mum total cost, whose union is Y; namely, the goal is to

findaset L.€{l,..,,m} that:

min W = Z w(S),
[el
subject to

Us=¥

fel

(8)

This section will show that the problem of optimal sensor
allocation, as defined in Equation (7), can be translated
Into a set-covering problem. To facilitate this translation,
Definition 3 and Proposition 1 below are needed.

We can aggregate all the variables whose mean shifts are
detectable by  into a set, C#, called a duty set of .

Definition 3. The duty set of @ is C¥ = {X;|y(X;, Q;,) >
nf:f — 11"‘1p}‘

In a special case when only one variable, X, is sensed,
1.6, 8 = [ X}, theduty set of { X} is

CA = (X|9(Xi, Xi) =008 = 1,005 p): )

Furthermore, a sufficient and necessary condition for
to be a feasible solution is given in Proposition 1.

Proposition 1. @ = {Q, ..., Q,} C X is a feasible solution
to the problem of sensor allocation, if and only if the union
of the duty sets C*%3, j e {1, ..., q}, is X; that is,

CJ Cl4t = X,
j=1

Proof. See Appendix 1. I

Based on Proposition 1, the problem of optimal sensor
allocation in Equation (7) can be redefined as finding a set
of sensors, £, in order to

q
min W= ) " w(Q)),
j=1
subject to

q
[ (10)
Jj=1

The input and goal of the general set-covering problem
and those of the problem of optimal sensor allocation in
Equation (10), are compared in Table 1. It is clear from
this table that the problem of optimal sensor allocation is
a set-covering problem.
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Table 1. Translation of optimal sensor allocation into a set-covering problem

General set-covering problem

Optimal sensor allocation

Input ¥ =4 Y vis Yoy
S X, k=1 .om
such that
UT:] S.=Y
w(S)
Goal Fia e $lo e m} in order to

min W= Z!EL w(S;)

X=X, X

Ao X k=l p, nataally
UL, 1 =X

w(CH4h) equivalent to sensing cost
w( Xk)

Find L Sl .. p} in order to
min W= ), w(X))
subject to | ;. C*!

|

X

It is known that the set-covering problem i1s NP-hard;
that is, an algorithm to obtain the optimal solution 1n
polynomial-time has not been found. Several approxi-
mation algorithms exist, which run in polynomial-time
and can produce a solution that i1s within a factor v of
the optimal solution, called v-approximation algorithms.
Among them, one of the most popular algorithms 1is
an H(maxy—i __=|Sk|)—approximation greedy algorithm

(Cormen et al., 2001), where | - | denotes the cardinality
of a set, and H(d) is the dth harmonic number; that 1s,

d
H(dy= ) "1/i, (11)
f==]

The greedy algorithm can be applied to search for the
solution to the problem of optimal sensor allocation, as
illustrated in the steps of Fig. 3, where A/B denotes the
complement of set B with respect to set A. By applying these
steps, a feasible solution, denoted by Lg C {1, ..., p}, can
be found, which leads to a total sensing cost W no greater
than H(maxy— . ,)|C*!|) times of the optimal (i.e., mini-
mum) total sensing cost Wop; that 1s,

Wg < H(max—i,.. ,|C'"*|) Wop. (12)

For example, for the hot forming process in Fig.
. assume that o =005, 4;=3 (i=s{l,...,5]) and
ARL,y(8;) = 5, then n; = 0.373 by Equation (6). By Def-
inition 3, C%! = {X5), CXel = (X}, CN) = Xy, X3},
Ci%l = (X3, X5}, and C¥Y = { Xy, X5, X1}, In addition,
assume that the sensing cost is the same across different
sensors; i.6,, w(Xz) = w, k=1, ..., 5. Therefore, by apply-
ing the greedy algorithm in Fig. 3, Lg = {1, 3, 5}; that 1s,
variables X, X3, and X5 should be sensed, and W5 = 3w.

U« X
LE} F¢
WhileU #¢, do:
Select an C{*"’m} that minimizes w(Xkﬂ )/}C{r*”]mUl

U« u\(ctlAu)
L < Lg Uik, )

Fig. 3. A greedy algorithm for optimal sensor allocation.

While the greedy algorithm does not guarantee to find the
optimal solution, it guarantees to find a feasible solution
that is bounded by a factor H(maxy—; _,|C*|) = H(3) =
1.8 of the optimal solution; e.g., WG < 1.8 Wop. Because
this example involves only five variables, it is easy to per-
form an exhaustive search to identify the optimal solu-
tion, Lope = {1, 3, 5}, although the exhaustive search runs
in exponential-time. Therefore, in this example, the greedy
algorithm happens to find the optimal solution.

4.2. An improved solution procedure by integrating BN and
the set-covering greedy algorithm

It is obvious from Equation (12) that the smaller the
H(maxg=, ,|C'*|), the closer the total sensing cost by
the greedy algorithm, W4, is to the optimal total sens-
ing cost, Wop. Due to the definition of the function H in
Equation (11), H(max;— . ,|C'*|) is monotonically in-
creasing with respect to maxy—; _, |C'*¥|. Therefore, an
effective way for bringing W; close to the optimal total
sensing cost Moy is to reduce maxy—; . ,/C'*!|. This mo-
tivates us to develop a pre-processing algorithm, which
recursively runs two rules (see Fig. 4) before the greedy
algorithm is executed, with the purpose of potentially re-
ducing max—;.._,|C!¥!|. Proofs of the validity of the two
rules are provided in Appendix 2. As a result, an integrated
algorithm, which combines the pre-processing algorithm
and the greedy algorithm in Fig. 3, can be developed, as
shown in Fig. 4.

The integrated algorithm in Fig. 4 is applied to the previ-
ous example. In the pre-processing stage, because X and X
satisfy that any duty set including X5 must include X4, X4
can be eliminated from U and every duty set that includes it,
according to Rule 1. As aresult, U = { X;, X», X3, X5}, and
the duty sets become C'! = [ X5}, CH¥4) = ¢, CI43} = (X7},
C*) = { X5}, and CYY = { X5, X,}. Furthermore, by ap-
plying Rule 2, because X; is only included in C'*', thus
X, must be sensed, i.e., Lg = {l}; U = { X3, Xs}; and the
duty sets become C'%! = { X5}, CX4 = ¢, CIB) = (X3},
CX2} = ¢, and CM! = ¢. By applying Rule 2 again, X
and Xs must be sensed, i.e., Lg = {1, 3, 5}; U = ¢; and all
duty sets become empty sets. Because U = ¢, the second
part of the integrated algorithm, i.e., the greedy algorithm,
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Fig. 4. An integrated algorithm for optimal sensor allocation by combining a pre-processing algorithm and the greedy algorithm in

Fig. 3.

does not need to be run; that is, the pre-processing al-
gorithm 1dentifies a solution, in fact the optimal solu-
tion, to the problem of sensor allocation. This exam-
ple shows that the pre-processing algorithm has at least
two advantages: first, it helps reduce the cardinalities of
the duty sets; second, it expedites identifying the optimal
solution.

4.3. A practical procedure to guide the decision making in
optimal sensor allocation

Note that the pre-processing algorithm proposed in the pre-
vious section can be combined with either the greedy algo-
rithm or the exhaustive search to improve search efficiency.
This section aims to identify practical considerations that
may influence a decision maker to choose between the
greedy algorithm and the exhaustive search for optimal
sensor allocation.

It 1s known from the previous section that the greedy
algorithm does not guarantee to find the optimal solution
to minimize the total sensing cost. Therefore, a decision
maker faces the choice of whether to run the greedy algo-
rithm to get a feasible solution, whose corresponding total
sensing cost can be as high as H(max—;__,|C!*¥|) times
the minimum total sensing cost: or run an exhaustive search
to find the optimal solution, which is computationally very
expensive, if not impossible. To choose one over the other,
the decision maker needs to be informed of two sets of in-
formation in comparing the greedy algorithm against the
exhaustive search; i.e., how much computational resource

can be saved and how much more total sensing cost has to
be spent.

The computational resources needed by the greedy al-
gorithm and the exhaustive search are primarily deter-
mined by their respective run time complexities. Given a
system of p physical variables, the run time complexity of
the exhaustive search is an exponential function of p; i.e.,
O(e?). Although the greedy algorithm is known to be ex-
ecuted in polynomial-time, to find the exact order of the
polynomial requires a detailed analysis of the algorithm.
Specifically, we show in Appendix 3 that the run time com-
plexity of the greedy algorithm is a quadratic function of
p; i.e., O(p*). Therefore, the greedy algorithm can save
(1 — p?/e?) x 100% of the computational resource used by
the exhaustive search. Denote this percentage as A ,; that is,

Ap = (1 = p*/e?) x 100%. (13)

The total sensing costs using the greedy algorithm and
the exhaustive search can be compared based on Equa-
tion (11), which, through some simple algebra, gives:

_1,...p/C*¥]) = 1) x 100%.
This indicates that the greedy algorithm may lead to a to-
tal sensing cost at most (H(maxg—;, . ,|C'* ) — 1) x 100%

more than the minimum total sensing cost. Denote this
percentage as A g, then

i = (H(maxg—; . ,|/C™) — 1) x 100%. (14)

Figure 5 plots A, with respect to different numbers of vari-
ables and A y with respect to different values for the maxi-
mum cardinalities of duty sets.

Considering the example in the previous section, because
p =35, A, = 83%; because H(max;—; _s|C'*|) = HQ3) =
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1.8, Ay = 80%. Note that this value of Ay corresponds to
a particular mean shift of interest, i.e., § = 3, under certain
requirements on the control chart performance including
Type-1 error @ = 0.05 and ARLy(8) = 5, which 1s directly
linked to Type-II error. As mean shifts with various
magnitudes may occur in practice, it 1s important to know
how the value of A i changes with respect to different mean
shift magnitudes. Toward this end, the function between
Ay and the mean shift § is identified through the following
proposition.

Proposition 2. For a BN whose structure and path coefficients
are known, Ay is an increasing function of the mean shift
of interest, 8, under given requirements on the maximum
allowable Type-I error of individual control charts, a, and
the maximum allowable Type-11I error of individual control
charts or, equivalently, the maximum allowable average run
length until the mean shift 6 is detected, ARLy(d). Denote

this function as A g = QBN o, ARL,;(5)(6).

Proof. See Appendix 4. The expression of ¢BN .o, 4RLy(5) 18
complicated and thus represented in an algorithmic format
in Fig. 6. 1l

In summary, in comparing the greedy algorithm against
the exhaustive search option the decision maker needs to
evaluate two sets of information: how much computational
resource can be saved, reflected by A,; and at most how
much more total sensing cost has to be spent with respect
to different magnitudes of the mean shift §, reflected by
Ay linked to & through the function ¢gn « 4rL,(8). Specif-
ically, if the potential saving 1n total sensing cost overrules
the additional spending in computational resource, then the
exhaustive search is suggested for optimally allocating sen-
sors; otherwise, the greedy algorithm 1s preferred. Figure 7
gives a procedure suggested for optimal sensor allocation
in practice.

5. Examples

S5.1. Hot forming process

Although exhaustive search can be adopted for optimal
sensor allocation in this simple system, we use this system
to illustrate the procedure in Fig. 7 and justify the integrated
algorithm in Fig. 4.

: (strucmrﬁ and path cnef‘fj/ a,0, ARL;U[@) :

________.__..-.-------------------i--'- e e = e

Generalized total effect of X on X;

o s e i e L L . . [ - ey e TTORE O o e = === g

(¥ X Lik=1
+ |
PBN . 4RL,,, (5) CH =X, |7, X, J2n,i=1,....p1 l
Ay = H(gﬁic{fﬂ !—1 !xlﬂf]% _]

____________________________________________________________

Fig. 6. Function A g = ¢BN.«. 4rLu(5)(8) 1In algorithmic format.
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| Builda BN structure :.a:ndw ath
coeffs.) on physical variables X

Determine maximum allowable type-I and type-1I
errors of individual control charts, and ARL,,(0)

S

¥ elfomdifa o | Com : g
Compute 4, = (1 p’le )xmﬂ A for different 0 according to the steps in Fig. 2

ute Ay = DPott o, 4R 1L, (5) (‘5)

Choose
greedy algorithm

Choose _
\ exhaustive search

Fig. 7. A practical procedure to guide the decision maker in optimal sensor allocation.

5.1.1. Demonstration of the practical procedure ( Fig. 7) for
optimal sensor allocation

The procedure in Fig. 7 1s followed for optimal sensor allo-
cation in the hot forming process of Figs. 1 and 2. Because
the process includes five variables, i.e., p =5, 1, = 83%,
indicating that the greedy algorithm can save 83% of the
computational resource used by the exhaustive search. Fur-
thermore, Fig. 8 plots A i against § for different combina-
tions of the maximum allowable Type-I error o and the
average run length in mean shift detection, ARLy. It in-
dicates that, for example, if « = 0.05 and ARLy(8) = 10,
then at most 83% and 108% more total sensing cost than
the minimum total sensing cost will be spent, for detect-
ing mean shifts § < 2 and § > 2, respectively. The decision
maker can weigh the computed %, and the Ay against §
plot in Fig. 8 in order to determine if he/she wants to run
the greedy algorithm or the exhaustive search approach for
optimal sensor allocation.

5.1.2. Sensor allocation by the integrated algorithm

Suppose that the greedy algorithm is chosen, it can be com-
bined with the proposed pre-processing rules, resulting in
the integrated algorithm shown in Fig. 4. The integrated
algorithm was applied to the hot forming process. As a re-

sult, Table 2 shows the feasible solution Lg, i.e., the indices
of the variables that should be sensed, for different combi-
nations of 8, ARLy(§) and «, assuming the same sensing
cost across different sensors. A general pattern in the tables
is that the larger the o, the ARL;y(8) or the §, the fewer the
number of variables that will be sensed, which agrees well
with intuition.

5.1.3. Comparison between the integrated algorithm
solution and optimal solution

[t 1s of interest to compare how the solution from the inte-
grated algorithm 1s different from the optimal solution, in
terms of which variables to be sensed as well as the total
sensing cost. Therefore, the exhaustive search was run for
different combinations of §, ARLy(8) and «. As a result,
a similar table for the optimal solution Ly, to Table 2 for
the integrated algorithm solution Lg, could be generated.
Comparison between L,y and Lg shows that Lg is the
same as L,y for any combination of §, ARL y(8) and «,
indicating that the integrated algorithm performs as well
as the exhaustive search for solving the problem of optimal
sensor allocation in the hot forming process.

Furthermore, because the path coefficients of the hot
forming process are estimated from a specific sample

a=0.01 a =0.05 a=0.1
| (e i 07 s L F
100 1 100| ¢ 5 { 100 ,
50 I——' 1 50 50 _ ARL,;;(0)=10
() e ' 0 0 x
£ 3 Wl s g % & 5 2 3
A, (%) 100 L T 1100 .
50|/ - 50 | ARL,(6)=15
0 0 - 0 .
2 R B g A & B 2 3
100|  / — 100 i { 100 |
50 P 50 50 | ARL,(0)=20
0 0L— - - 0L—
2 9 4 B B3 S E >3
Mean shifto

Fig. ‘8. Percentages of largest possible additional spending in total sensing cost by greedy algorithm, compared with minimum total
sensing cost, as a function of mean shifts of interest, under different combinations of &« and ARL 1u(d) for the hot forming process in

Figs. 1 and 2.
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Table 2. Integrated algorithm solution for the hot forming pro-
cess, Lg (o =0.01, 0.05and 0.1)

o ARL;y(6) ¢ o 2.5 3

0.01 10 113345 {1235 4135 4135

15 12345 {135 {135} 4135
20 f1235° {1351 J135F 1.2
0.05 10 Basl 35y 1L 2
5 {1,2} {1,2} {1} {1}
20 {1,2} {1} {1} {1}
0.1 10 1,2} {1} {1} (1
15 {1} {1} {1} {1}
20 {1} {1} {1} {1}

dataset, it is of interest to study how different estimates
of the path coefficients may impact the performance of the
integrated algorithm. Toward this end, another simulation
study was performed which included the following steps.

1. The BN structure is randomly parameterized; that is,
with the fixed structure (i.e., nodes and arcs), the pa-
rameters (i.e., path coefficients of the arcs) take values
of randomly generated numbers following a uniform
distribution between zero and one.

2. The integrated algorithm and the exhaustive search are
run on the parameterized BN in Equation (1); the so-
lutions, i.e., the indices of the variables to be sensed,
are saved in Lg and Loy, respectively; the total sensing
costs are saved in W5 and Wop, respectively.

3. If Lg contains the same indices as Lopt, then diffse =
0: otherwise, diffsqy = 1. Similarly, diffcost = (WG —
%pt)/ WOpt-

4. Steps 1 to 3 are repeated NN times, and the average diffso
and diffcos are computed and saved into diffss and

diffcost, respectively.

Steps 1 to 4 were performed under different combina-
tions of 8§, ARL;y(8) and «. It turns out that diffs, =0
and diffcoss = 0, indicating that the integrated algorithm
performs as well as the exhaustive search, for different pa-
rameterizations of the BN.

5.1.4. System abnormality detection using the sensors
allocated by the integrated algorithm

This study will evaluate the performance of the sensors al-
located by the integrated algorithm in detecting different
kinds of system abnormalities. The system abnormalities
under consideration include mean shifts of magnitude §
in single variables or in multiple variables simultaneously.
Specifically, single-variable mean shifts are considered, be-
cause they represent weaker system abnormalities than
multiple-variable mean shifts and thus are more difficult
to detect. In other words, if the allocated sensors perform
well in detecting single-variable mean shifts, they should
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perform better in detecting multiple-variable mean shifts,
which are more noticeable.

It 1s known that the sensors allocated by the integrated
algorithm may be different for each combination of §,
ARLlu(ﬁ) and «. In particular, when 6 = 3, ARL]U(ﬁ) =
10, and o« = 0.05, sensors will be allocated to variables
X7 and X5: ie., Lg = {1, 2} (see Table 2). In what fol-
lows, this particular sensor allocation scheme 1s evaluated
in detecting single-variable mean shifts. Other sensor allo-
cation schemes, corresponding to other combinations of é,
ARLy(d), and a, can be evaluated 1in a similar manner.

Specifically, the evaluation involves four steps.

1. A mean shift of three standard deviations (1.e., § = 3) 1s
introduced to a variable X;,7 € {1, ..., 5}.

2. One dataset of X with M samples 1s generated, in which
the introduced mean shift occurs at the first sample of
X;. Samples of X7 and X; (i.e., the two variables to
which sensors have been allocated) are plotted on Shew-
hart control charts, respectively, with control limits be-
ing +z, . Here, the Bonferroni method 1s used to set
o =a/2 =0.025 (i.e., zoy2 = 2.24) 1n order to control
Type-I error at the system level.

3. Indices of the first out-of-control samples on the two
control charts are recorded as RL; and RL,, re-
spectively. Furthermore, RLnj, = min{RL;, RL,} and
Ivin = argmin, E“”-,3}{1‘%_5} are computed.

4. Steps 1 to 3 are repeated N times. The average RLmin,
RL.in, is computed; and the mode of I, mode (Ipin)
1s also computed.

Following the above four steps, RLyix and mode (Znin)
were obtained for each single-variable mean shift, as shown
in Table 3.

[t can be seen from Table 3 that the estimated average
run length RL.;, for sensors on X; and X> to detect any
single-variable mean shift is below the maximum allow-
able average run length ARLu(8) = 10, indicating that the
sensors allocated by the integrated algorithm can success-
fully detect system abnormalities. Furthermore, the values
of mode (I;,) imply that the mean shift in a variable 1s
signaled by its descendent at a majority of the times. This
makes it possible to trace backward from the signaling sen-
sor to locate the variable that initiates the mean shift and,
therefore, facilitate root cause diagnosis after the abnor-
mality detection. Similar results to those in Table 3 can be

Table 3. Estimated average run length (over 5000 simulation
runs; i.e., N = 5000) and the primary responsible sensor in de-
tecting single-variable mean shifts in the hot forming process

Mean shift variable
X X5 X; X X
RL,: 1.34 1.20 5.94 3.36 7.50
mode( [nin) 1 2 1 | 2
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Fig. 9. BN of a cap alignment process (Wolbrecht er a/., 2000); highlighted nodes are variables to which sensors are allocated by the

integrated algorithm.

observed for other sensor allocation schemes, demonstrat-
ing the effectiveness of sensor allocation by the integrated
algorithm in the hot forming process.

S5.2. A large-scale manufacturing process

In large-scale manufacturing processes involving numerous
variables, optimal sensor allocation by exhaustive search is
impossible. For example, we ran an exhaustive search on
BNs of various sizes and found that when BNs include
more than 15 variables, the exhaustive search is very likely
to fail due to memory overflow errors (Intel Xeon 1.86 GHz

dual core processor, 2 GB RAM). Therefore, the greedy
algorithm must be applied for sensor allocation in large-
scale manufacturing processes.

In this section, we applied the integrated algorithm in
Fig. 4, i.e., the pre-processing algorithm followed by the
greedy algorithm, to a cap alignment process, a high-speed
automated assembly process essential for the production
of some precision products. Monitoring and abnormality
detection of the cap alignment process are very important
because the quality of the precision product depends on
the positional accuracy of the cap on the base part. Wol-
brecht et al. (2000) developed a BN to represent the causal
relationships among 35 key variables involved in a cap
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Table 4. Estimated average run length (over 5000 simulation runs) and the primary responsible sensor in detecting single-variable

mean shifts in the cap alignment process

Mean AlDdXdX AlDdY Al1DdThZ A2DdX
RE s 1.91 1.96 1.99 2.13
mode(/nin) A1DdXdX AlDdY AIDdThZ A2DdX
Mean PreJdX ° PreJdY PreldThZh PostlJdX
R 1.89 1.88 1.93 2.16
mode( /) PrelJdX PreJdY PreldThZh Post]dX
Mean PreJSens PostJSensl PostJSens2 PJSUsed
Rl 207 2.49 1.76 3.11
mode(/yin) PreldY PostldY PostJdX  Post]JdX
Mean AUsed A3Delta A3 A2Delta
B 5.62 3.08 5.9 6.73
mode( Lnin) Apos A3DdThZ A3DdThZ A2DdX Z

A2DdY A2DdThZ A3DdX A3DdY A3DdThZ
1.24 1.8 1.8 1.97 1.91
A2DdY A2DdThZ A3DdX A3DdY A3DdThZ
PostJdAYYhYh PostJdThZ  AlSens A2Sens A3Sens
2.01 2.03 EL G 2.97 23
PostJdYYhYh PostJdThZ AlIDdXdX A2DdThZ A3DdX
PostJPos PostJoin PreJPos PreJoin Apos
2.4 3.9 1.56 1.96 1.82
PostJdY Post]JdY PreJdY PreJdY Apos
A2 AlDelta Al Material
1.95 4.25 1.83 717
A2 A1DdY Al A3DdThZ

alignment process at Hewlett Packard. The BN 1s shown
in Fig. 9 and physical interpretation of the variables can be
found in their paper.

Given that § = 3, ARLy(8) = 10, and « = 0.05, the in-
tegrated algorithm generates a solution according to which
sensors are allocated. The variables to which sensors are
allocated are denoted by nodes with thick-lined circles in
Fig. 9. This particular sensor allocation scheme was eval-
uated for its ability to detect single-variable mean shifts,
and results are shown in Table 4 by following similar steps
to steps 1 to 4 in the previous section. It can be seen from
Table 4 that the estimated average run length, RLy,, for
the sensors allocated by the integrated algorithm to detect
any single-variable mean shift is well below the maximum
allowable average run length ARLy(8) = 10. Also, the val-
ues of mode (I,,iy) imply that the mean shift in a variable 1s
signaled by its decrease in a majority of cases. Therefore, the
integrated algorithm facilitates not only abnormality detec-
tion but also root cause diagnosis. Similar results to those in
Table 4 can be observed for other sensor allocation schemes,
demonstrating the effectiveness of sensor allocation by the
integrated algorithm in the cap alignment process.

6. Conclusions

Optimal sensor allocation for system abnormality detec-
tion is an important research issue in quality engineering.
This article proposed to represent the causal relationships
among physical variables in the system by using a BN, based
on which optimal sensor allocation can be formulated into
a set-covering problem. Furthermore, an integrated algo-
rithm, created by combining the BN and a set-covering
greedy algorithm, was developed to determine which phys-
ical variables should be sensed, in order to minimize the
total sensing cost as well as satisfy a prescribed detectabil-
ity requirement. In addition, a practical procedure was de-
veloped to guide decision makers to choose between the
greedy algorithm and exhaustive search, for the case where
the greedy algorithm cannot find the optimal solution, by

considering the trade-off between sensing and computa-
tional costs. Finally, two case studies were conducted: one
on a hot forming process, showing that the integrated al-
gorithm can find the optimal solution for sensor allocation
and the control chart system based on the allocated sensors
satisfies the prescribed detectability requirement; the other
on a large-scale cap alignment process, showing that only
half of the total number of variables need to be sensed by
the integrated algorithm and the detectablity requirement
is also satisfied.

Note that although the proposed method was intended
for abnormality detection, it can also help other impor-
tant goals in quality control to be better realized, such
as root cause identification. For example, assuming that
sensors are allocated following the proposed method and
that a mean shift is detected by the sensor on Xj, it 1s
immediately known that root cause variables should be in-
cluded in the upstream variables of X; and X; but definitely
not others. Then, further inspection or mobile sensing can
be conducted only on the upstream variables to identify
the root cause variables. This avoids installing sensors on
all physical variables at once but enables a new adaptive
sensor allocation strategy that advocates allocating mobile
sensing efforts progressively and on-demand to fulfill the
quality control objectives of detection and root cause 1den-
tification. This strategy leads to cost reduction and eases
massive data communication and analysis in DSNs.

It is also worth mentioning that this article offers only
one formulation for the problem of optimal sensor alloca-
tion; i.e., to formulate it into an optimization problem that
treats detectability as a constraint and the sensing cost as
the objective function. Two other potential formulations
include: (i) treating the sensing cost as a constraint and de-
tectability as the objective function; and (i1) combining the
sensing cost and detectability into the objective function,
if a cost function for detectability can be known. All these
three formulations are useful, depending on what informa-
tion is available and what objective is concerned in a specific
application. Therefore, while this article focuses on the first
formulation, the other two formulations will be thoroughly
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investigated in future research. Another future research di-
rection i1s to conduct sensitivity studies to see how vari-
ability around the sharp cut-off for detectability will be
translated into the variability in the minimum sensing cost.
Furthermore, multivariate control charting techniques may
be compared with the currently used single-variable control
charts, to see what competitive advantages they may offer.

References

Akyildiz, I.LE., Su, W.,, Sankarasubramaniam, Y. and Cayirci, E. (2002)
Wireless sensor networks: a survey. Computer Networks, 38(4), 393
422,

Buntine, W. (1996) A guide to the literature on learning probabilistic
networks from data. JEEE Transactions on Knowledge and Data
Engineering, 8, 195-210.

Ceglarek, D. and Khan, A. (2000) Sensor optimization for fault diag-
nosis in multi-fixture assembly systems with distributed sensing.
Transactions of the ASME, Journal of Manufacturing Science and
Engineering, 122(1), 215-226.

Ceglarek, D., Khan, A., Shi, J., Ni, J. and Woo, T.C. (1999) Sensor opti-
mization for fault diagnosis in single fixture systems: a methodology.
Transactions of the ASME, Journal of Manufacturing Science and
Engineering, 121(4), 771-777.

Cormen, T.H., Leiserson, C.E, Rivest, R.L. and Stein, C. (2001) Intro-
duction to Algorithms, MIT Press, Cambridge, MA.

Dhillon, S.S. and Chakrabarty, K. (2003) Sensor placement for effective
coverage and surveillance in distributed sensor networks. in Pro-
ceedings of the 2003 IEEE Wireless Communications and Networking
Conference, Volume 3, pp. 1609-1614.

Ding, Y., Elsayed, E.A., Kumara, S., Lu, J.C., Niu, F. and Shi, J. (2006)
Distributed sensing for quality and productivity improvements.
IEEE Transactions on Automation Science and Engineering, 3(4),
344-358.

Ding, Y., Kim, P, Ceglarek, D. and Jin J. (2003) Optimal sensor distri-
bution for variation diagnosis in multistation assembly processes.
IEEFE Transactions on Robotics and Automation, 19(4), 543-556.

Khan, A. and Ceglarek, D. (1998) Sensor location optimization for
fault diagnosis in multi-fixture assembly systems. Transactions of the
ASME, Journal of Manufacturing Science and Engineering, 120(4),
781-791.

Kline, R.B. (2005) Principles and Practice of Structural Equation Model-
ing. The Guilford Press, New York.

Korb, K.B. and Nicholson, A.E. (2003) Bayesian Artificial Intelligence,
Chapman & Hall/CRC, London.

Lauritzen, S.L. and Wermuth, N. (1989) Graphical models for associ-
ations between variables, some of which are qualitative and some
quantitative. Annals of Statistics, 17, 31-57.

Li, J, Jin, J. and Shi, J. (2008) Causation-based T decomposition for
multivariate process monitoring and diagnosis. Journal of Quality
Technology, 40(1), 46-58.

Liu, C.Q., Ding, Y. and Chen, Y. (2005) Optimal coordinate sensor place-
ments for estimating mean and variance components of variation
sources. IIE Transactions, 37, 877—-889.

Mhatre, V.P, Rosenberg, C., Kofman, D., Mazumdar, R. and ShrofT,
N. (2005) A minimum cost heterogeneous sensor network with a
lifetime constraint. JEEE Transactions on Mobile Computing, 1, 4-
13

Montgomery, D.C. (2001) Introduction to Statistical Quality Control,
Wiley, New York.

Shi, J. (2006) Stream of Variation Modeling and Analysis for Multistage
Manufacturing Processes, CRC Press, Boca Raton, FL.

Spirtes, P., Glymour, C. and Scheines, R. (1993) Causation, Prediction,
and Search, Springer-Verlag, New York.

313

Tarabanis, K.A., Allen, PK. and Tsai, R.Y. (1995) A survey of sensor
planning in computer vision. IEEFE Transactions on Robotics and

Automation, 11(1), 86-104.

Wang, Y. and Nagarkar, S.R. (1999) Locator and sensor placement for
automated coordinate checking fixtures. Transactions of the ASME,
Journal of Manufacturing Science and Engineering, 121, 709-719.

Wolbrecht, E., D’Ambrosio, B., Paasch, R. and Kirby, D. (2000) Mon-
itoring and diagnosis of a multistage manufacturing process using
Bayesian networks. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 14(1), 53-67.

Wright, S. (1921) Correlation and causation. Journal of Agricultural Re-
search, 20, 557-585.

Xu, K., Wang, Q., Hassanein, H. and Takahara, G. (2005) Optimal
wireless sensor networks (WSNs) deployment: minimum cost with
lifetime constraint. 2005 IEEE International Conference on Wireless

and Mobile Computing, Networking and Communications, Volume 3,
pp. 454-461.

Appendix
Appendix 1: Proof of Proposition 1.

1. Proof of sufficiency.
Because | J?_, C*! = X, any X; € X must be included in

at least one C**%!, j € {1, ..., ¢}. Denoting a C'*/! that in-
cludes X; by C'*¥*! then the mean shift in X; is detectable
by {€2;+} according to Definition 3 of the duty set. Further-
more, because 2;- € 2, the mean shift in X; is detectable
by . Therefore, according to Definition 2, €2 is a feasible
solution. il

2. Proof of necessity.

If the mean shift in any X; € X is detectable by 2, then
there must exist a ;- € & such that the mean shift in X; is
detectable by {Q;+}; i.e., X; € C'€*} Thus,

Appendix 2: Proofs of Rule 1 and Rule 2

Proof of Rule 1. Let C'** be a duty set that is included in
the solution by the greedy algorithm, i.e., k € Lg, and that
includes X;;i.e., X; € C'*, Then, X; € C'* by the condi-
tion in Rule 1. This means that X; will become detectable
as long as X; is detectable. Thus, X; can be eliminated from
X. As a result, 1f any of these variables are included in a
duty set, they should be eliminated from that duty set. W

Proof of Rule 2. If X; belongs to only one duty set C!¥#},
then X, must be sensed in order to detect the mean shift
in X;. In this case, X, is actually just X; because X; must
belong to the duty set of itself. Furthermore, because X;
1s sensed, the mean shifts in all the variables included in
the duty set C'*) will become detectable. Therefore, the
variables included in C'* can be eliminated fromX. ®H
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Appendix 3: Analysis of the greedy algorithm in optimal
sensor allocation.

To analyze the greedy algorithm, the abstract steps of the
algorithm given in Fig. 3 have to be expanded into the
pseudocode presented in Table Al, with each line i taking
a constant amount of run time, #;, when executed.

Table Al. Analysis of the greedy algorithm in optimal sensor
allocation

Run time Times of
for one executions (worst-

Pseudocode of greedy
algorithm input:

X,ClA wiX ). k=1,...,p execution case scenario)
U«X 4] 1
LG «~— @ ) 1
While U # @ f p+ 1
do Cmin < infinity Iy J2
for k < 1top s p(p+1)
¢ (k) < w(Xy)/ICH AU g p?
if ¢ (k) < Cmin I p°
Emin < & (k) I p’
ko « k I9 P’
U « U\ (C{X“ﬂ} N U) 1o P
Lg < Lg U {ko} ¥ P

Therefore, the run time of the greedy algorithm 1s the
sum of run times for each line executed; that 1s,

hotal =1+ +6(p+ 1)+ up+itsp(p+1)
+(ts+t+B+0)p°+o+n)p (Al

Because the highest order of the polynomial in Equation
(A1) is two, the run time complexity of the greedy algorithm
is O(p?).

Appendix 4: Proof of Proposition 2

Let B= f(A; %, 4, |)denote that Bis an increasing func-
tion of A; with other arguments (i.e., 4;) held constant and
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a decreasing function of 4, with other arguments (i.e., 4;)
held constant. Then,

Ay = f(H(maxk:]“_”ﬂC{X‘f}U T

Because

-----

hg= JIC**|1).
According to the definition of C in (9), |C'¥| =

f(ni 1), then Ay = f(n; {). Furthermore, according
to the definition of »; in Equation (6), n; =
fla |, 4, ARLy(6;) {). Thus,

Ag = fla 1,6 1, ARLu(5;) 1). (A2)

If the minimum interested mean shift to be detected for
each variable can be assumed to be the same, 1.e., §; = 4,
Equation (A2) can be simplified into

AH = fPBN,a,ARLm(a)(S)- =
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