
This article was downloaded by: [University of Michigan]
On: 25 January 2014, At: 16:11
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

IIE Transactions
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/uiie20

Separation of individual operation signals from mixed
sensor measurements
Qingyu Yang a & Jionghua (Judy) Jin b
a Department of Industrial and System Engineering , Wayne State University , Detroit , MI ,
48202 , USA
b Department of Industrial and Operations Engineering , The University of Michigan , Ann
Arbor , MI , 48109 , USA
Accepted author version posted online: 08 Aug 2011.Published online: 14 Jun 2012.

To cite this article: Qingyu Yang & Jionghua (Judy) Jin (2012) Separation of individual operation signals from mixed sensor
measurements, IIE Transactions, 44:9, 780-792, DOI: 10.1080/0740817X.2011.609873

To link to this article:  http://dx.doi.org/10.1080/0740817X.2011.609873

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/uiie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/0740817X.2011.609873
http://dx.doi.org/10.1080/0740817X.2011.609873
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


IIE Transactions (2012) 44, 780–792
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/0740817X.2011.609873

Separation of individual operation signals from mixed
sensor measurements

QINGYU YANG1 and JIONGHUA (JUDY) JIN2∗

1Department of Industrial and System Engineering, Wayne State University, Detroit, MI 48202, USA
2Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
E-mail: jhjin@umich.edu

Received March 2010 and accepted June 2011

Sensor system measurements are generally mixed signals measured from multiple independent/dependent operations embedded in a
complex system. In this article, a novel method is developed to separate the source signals of individual operations from the mixed
sensor measurements by integrating the independent component analysis method and the Sparse Component Analysis (SCA) method.
The proposed method can efficiently estimate the source signals that include both independent signals and dependent signals that
have some dominant components in the time or some linear transform domains (e.g., frequency domain, time/frequency domain,
or wavelet domain). In addition, an SCA method is also developed in this article that can automatically identify the dominant
components in multiple linear transform domains. A case study of a forging process is conducted to demonstrate the effectiveness of
the proposed methods.

Keywords: Blind source separation, independent component analysis, mixed sensor signal, sparse component analysis

1. Introduction

In general, complex manufacturing processes consist of
multiple independent/dependent operations, and it quickly
becomes impossible or simply unaffordable to directly mea-
sure all individual operations separately. The available sen-
sor measurements are usually the combined responses of
multiple operations. In this article, the responses of indi-
vidual operations are called source signals, and the sensor
measurements are called mixed sensor signals. If there is a
linear relationship between the source signals S(t) and the
mixed sensor signals X(t), the following equation holds:

X(t) = AS(t) + ε(t), (1)

where t denotes the time index within a complete cycle of
repetitive system operations. A discrete sampling time t is
used for both mixed sensor signals and source signals; i.e.,
t = 1, 2, . . . , N, where N is the number of data points sam-
pled within a complete cycle of system operations. S(t) ≡
[S1(t) S2(t), . . . , Sn(t) ]T ∈ �n×N represents n unknown
source signals corresponding to n individual operations
embedded in a system; X(t) ≡ [X 1(t) X2(t), . . . , Xm(t) ]T ∈
�m×Nrepresents m (m ≥ n) mixed sensor signals; A ∈
�m×nis an unknown constant mixing matrix, representing
the linear relationship between the mixed sensor signals and
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the source signals; and ε(t) ≡ [ ε1(t) ε2(t), . . . , εm (t)]T ∈
�m×N represents m sensor noises following a multivariate
independent and identically distributed normal distribu-
tion; i.e., ε(t) ∼ MN(0, ζ 2I), where I is an m × m identity
matrix.

The mixed sensor signals, which are the combined re-
sponses of the source signals, are generally shown as a
high-dimensional functional data structure and have com-
plex non-stationary characteristics in both the time and
frequency domains. Although recently developed advanced
Statistical Process Control (SPC) methods can be success-
fully used to detect system abnormalities based on mixed
sensor signals, it is still difficult and/or time consuming to
find out which embedded operation has created the sys-
tem abnormality. In contrast, if we can separate individual
source signals from the mixed sensor signals, it will become
feasible to directly monitor each source signal and provide
explicit diagnostic information for individual operations.
Therefore, there is considerable interest in research on esti-
mating source signals from mixed sensor signals.

For the purpose of estimating individual source signals
from the mixed sensor signals when the constant mixing
matrix A in Equation (1) is unknown, Independent
Component Analysis (ICA; Herault and Jutten, 1986;
Gaeta and Lacoume, 1990; Comon, 1994; Hyvarinen and
Oja, 1997; Hyvrinen et al., 2001) and Sparse Compo-
nent Analysis (SCA; Jourjine et al., 2000; Lewicki and
Sejnowski, 2000; Bofill and Zibulevsky, 2001; Zibulevsky
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Separation of mixed signals 781

Fig. 1. A multiple operation forging process consisting of five operations.

and Pearlmutter, 2001; Yilmaz and Rickard, 2004; Abrard
and Deville, 2005; Li et al., 2006) are two general methods
studied in the literature.

The ICA method is used to effectively separate individ-
ual source signals from mixed sensor signals based on the
assumption that the source signals are statistically inde-
pendent and non-Gaussian. The ICA method was first
proposed by Herault and Jutten (1986) and used to sep-
arate independent source signals from mixed sensor signals
using a recurrent artificial neural network. Later, Comon
(1994) found that mutual information was a suitable mea-
sure of “independence,” and he further developed an ICA
algorithm by minimizing the mutual information between
the estimated source signals. Furthermore, Hyvarinen and
Oja (1997) developed a fast ICA method by maximizing the
non-Gaussian nature of the estimated source signals, which
was shown to be equivalent to minimizing the mutual infor-
mation between source signals. Gaeta and Lacoume (1990)
proposed an ICA method based on maximum likelihood
estimation that was shown to be essentially equivalent to
the ICA method based on mutual information and a non-
Gaussian nature.

In contrast, the SCA method is often used to separate
source signals from mixed sensor signals no matter whether
or not the source signals are dependent. The source signals
are called sparse signals if only one source signal occurs (or
is dominant) at either specific time periods or feature sub-
sets in a linear transform domain (i.e., a single source signal
provides a sole or a dominant contribution to the mixed
sensor signals at either these time periods or feature sub-
sets). The first SCA method was proposed by Lewicki and
Sejnowski (2000). Jourjine et al. (2000) proposed the DUET
algorithm, which was based on a Short-Time Frequency
Transform (STFT), which assumed that all of the feature
subsets of the mixed sensor signals in the time/frequency
domain were contributed to by only one source signal.
Abrard and Deville (2005) improved this method by us-
ing a less restrictive assumption; i.e., for each source signal,
there exists a feature subset in the time/frequency region
for which only this source signal occurs. Recently, Li et al.
(2006) proposed a method to estimate source signals in the
wavelet domain.

Although significant successes have been achieved in
both the ICA and SCA fields, the application of ICA and
SCA methods in practice is still limited. The major obstacle
is that a complex system usually cannot completely satisfy
the assumption that all source signals are independent of
each other or each of the individual source signals is dom-
inant at either specific time periods or feature subsets in a
linear transform domain.

For example, a progressive forging process, as shown in
Fig. 1, consists of five embedded dies that perform different
operations at five separate stations: preforming, blocker,
finisher, piercing, and trimming. An automatic part-feeding
device is used to load the raw material billet and advance
the intermediate part between processing stations. All five
operations are performed within each press stroke through
the five embedded dies exerting tonnage forces on the billet
or intermediate parts at each corresponding station. A final
product is produced after each billet has sequentially passed
through all five stations.

For process monitoring purposes, strain gage sensors are
usually installed on the columns of a forging press ma-
chine to measure the press tonnage forces. The force mea-
surements from the gage sensors can be considered to be
mixed sensor signals that are linear combinations of the
die forces (i.e., source signals) generated at the individual
operations. Figure 2 shows the individual die forces gen-
erated by these five die operations. It has been reported
in the forging/stamping processes literature that the active
working range of each operation is only a limited portion
of the complete operation cycle (Jin, 2004; Jin and Shi,
2005). For the forging process illustrated in Fig. 1, the ac-
tive working range of the ith individual operation is denoted
by Li ≡ [li,0, li,1], i = 1, 2, . . . , 5, and the values of Li are
listed in Table 1, in which li,0 and li,1 (i = 1, 2, . . . , 5) de-
note the start and end time indices of the active working
range of station i. Furthermore, data segmentation is con-
ducted to divide the complete operation cycle into 11 data
segments; i.e., Ti, i = 1, 2, . . . , 11, with each boundary of
a segment being either a start or an end time index of the
active working ranges (Jin, 2004). This data segmentation
method allows the stations contributing to a given data
segment to be explicitly known. For example, segment T2
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782 Yang and Jin

Table 1. Active working ranges of the five operations embedded
in the forging process illustrated in Fig. 1

L1 L2 L3 L4 L5

[35, 494] [179,672] [436,720] [196,353] [100,268]

is only contributed to by station 1, whereas segment T3 is
contributed to by both stations 1 and 5.

Furthermore, based on die design knowledge, it is
known that the die forces generated by the piercing op-
eration and the trimming operation are two independent
source signals, whereas the die forces corresponding to
the preforming, blocker, and finisher operations are three
dependent source signals. If there is no engineering knowl-
edge available, statistical methods available in the litera-
ture (Chiu et al., 2003; Karvanen, 2005) can be used to
offline check whether source signals are independent or
dependent.

Because the source signals consist of not only indepen-
dent source signals but also dependent source signals, the
assumption of the standard ICA method, which assumes
that all of the source signals are independent, is not fully sat-
isfied. Also, it can be seen from Fig. 2 that the magnitudes
of the independent source signals generated at stations 4
and 5 are much smaller than those of the dependent source
signals generated at stations 1 to 3. This further complicates
the problem of finding the specific time periods or feature
subsets in a linear transform domain in which the source
signals generated at stations 4 and 5 dominantly contribute
to the mixed sensor signals. Therefore, the assumption that
underpins the SCA method cannot be fully satisfied. As a
result, neither a single ICA method nor an SCA method
can be used to fully separate these five individual die forces
from mixed tonnage sensor measurements.

Fig. 2. Source signals generated for individual operations.

A novel signal separation method is developed in this
article for source signals that include both independent and
dependent signals. For the dependent source signals, it is
assumed that there are some dominant components in some
linear transform domains. In the proposed method, the
integration of ICA and SCA is achieved through two major
steps: in step 1, the ICA method is applied to the mixed
sensor signals; the estimated independent source signals
are then identified from the estimated signals after using
the ICA method. In step 2, the impact of the independent
source signals is removed from the mixed sensor signals,
and the remaining sensor signals, called the reduced sensor
signals, are used to further estimate the dependent source
signals using the SCA method.

The rest of this article is organized as follows: Section
2 introduces an overview of the proposed methods. The
details of the methodology development are presented in
Sections 3 and 4: Section 3 discusses the ICA method for
estimating the independent source signals from the linear
mixed sensor signals and Section 4 develops a new SCA
method to estimate the dependent source signals. A case
study is investigated in Section 5, and conclusions are drawn
in Section 6.

2. Overview of the proposed methods

2.1. Mathematical model of the signals and assumptions

When considering both the independent source signals and
the dependent source signals, model (1) can be rewritten as
follows:

X(t) = [AIAD] ×
[

SI(t)

SD(t)

]
+ ε(t), (2)

where SI(t) ≡ [SI(1)(t)SI(2)(t) · · · SI(p)(t)]T ∈ �p×N repre-
sents p independent source signals that are statis-
tically independent of other source signals. SD(t) ≡
[SD(1)(t)SD(2)(t) · · · SD(q)(t)]T ∈ �q×N, p + q = n, repre-
sents q dependent source signals that are statistically de-
pendent because these corresponding operations may share
some common physical factors. In this article, the num-
bers p and q are assumed to be given. In addition, both
the independent source signals SI(t) and the dependent
source signals SD(t) are assumed to be non-Gaussian; AI ≡
[aI(1)aI(2) · · · aI(p)] ∈ �m×p and AD ≡ [aD(1)aD(2) · · · aD(q)] ∈
�m×q are unknown constant mixing matrices, representing
the linear relationship between the mixed sensor signals and
the independent/dependent source signals, respectively. In
order to fully estimate the source signals, both AI and AD
are assumed to have full column rank. For convenience,
and without loss of generalization, columns AI and AD are
scaled so that (aI( j ))

TaI( j ) = 1 and (aD(i ))
TaD(i ) = 1. X(t)

and ε(t) are defined as before, and ε(t) is assumed to be
statistically independent of both SI(t) and SD(t).
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Separation of mixed signals 783

Fig. 3. Method for estimating the independent/dependent source signals from mixed sensor signals.

2.2. Proposed two-step analysis framework

There are two major steps, as shown in Fig. 3, in the de-
velopment of the method to estimate individual indepen-
dent/dependent source signals from mixed sensor signals.
In step 1 to be discussed in Section 3, the estimated inde-
pendent source signals, denoted as ŜI(t), are obtained based
on the ICA method. Specifically, in Section 3.1, the ICA
method is applied to the mixed sensor signals X(t). Since
the assumption of the ICA method is not satisfied for all
source signals, it will be proved that the estimated signals
after using the ICA method, denoted as Y(t), will surely
include the estimated independent source signals ŜI(t). In
Section 3.2, an algorithm is developed to identify ŜI(t) from
Y(t) that estimates the statistically independent source sig-
nals by maximizing the “independence” of the estimated
signals. Then, in Section 3.3, the impact of the independent
source signals is removed from the mixed sensor signals. In
step 2 to be discussed in Section 4, the remaining sensing
signals, called the reduced sensor signals and denoted as
X̃(t) ≡ [X̃1(t), X̃2(t), . . . , X̃m(t)]T ∈ �m×N, are used to ob-
tain the estimated dependent source signals, denoted as
ŜD(t), by using the SCA method. Specifically, Section 4.1
introduces the SCA method and a novel SCA procedure is
developed in Section 4.2. After these two steps of separation
analyses, both independent and dependent source signals
are separately estimated from the mixed sensor signals.

3. Estimation of independent source signals using ICA

The main idea of the ICA method is to find a constant
unmixing matrix W ∈ �n×msuch that

Y(t) = WX(t), (3)

where Y(t) ≡ [Y1(t), Y2(t), . . . , Yn(t)] ∈ �n×N estimates the
statistically independent source signals by maximizing
the independence of the estimated signals. In the ICA
literature (Hyvrinen et al., 2001), the independence is

quantitatively measured by using kurtosis, negentropy, or
entropy.

3.1. ICA method applied to the mixed sensor signals

In this research, the source signals are composed of both
independent source signals SI(t) and dependent source sig-
nals SD(t). Although the assumption of the ICA method
is not satisfied, the ICA method can still be applied to the
mixed sensor signals X(t) based on the following Proposi-
tion 1, which shows that the estimated signals after using
the ICA method include the estimate of the independent
source signals; i.e., ŜI(t). Please refer to the Appendix for a
detailed proof of Proposition 1.

Proposition 1. The estimated signals after applying the ICA
method on the linear mixed sensor signals X(t) are composed
of (i) a set of p signals ŜI(t) that estimate independent source
signals SI(t) and (ii) a set of q signals, denoted by ŜD′(t).
ŜD′(t) ∈ �q×N estimates signals that are a linear transfor-
mation of SD(t); i.e., DSD(t), where D∈ �q×q is an unknown
constant matrix that maximizes the independence of DSD(t).

3.2. Identification of estimated independent source signals

Based on Proposition 1, the estimated signals after using
the ICA method—i.e., Y(t)—include not only ŜI(t) but also
ŜD′(t). In this subsection, an algorithm is developed to
identify ŜI(t) from Y(t) based on the active working ranges
of different operations. In this article, it is assumed that
the active working ranges of all independent/dependent
source signals do not exactly overlap and are pre-known
from engineering design knowledge. Since the magnitude
of source signals is zero outside the active working ranges,
if Yi (t) estimates the jth independent source signal SI( j )(t),
the energy of Yi (t) should concentrate in the active working
range ofSI( j )(t), denoted as LI( j ) ≡ [lI( j ),0, lI( j ),1], j = 1, 2, . . .,
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784 Yang and Jin

p. Here, the energy of signal Yi (t) is defined as

Ei,0 =
N∑

t=1

(Yi (t))2, (4)

and the energy of signal Yi (t) in segment LI( j ), denoted as
Ei, j , is calculated as follows:

Ei, j =
lI( j ),1∑

t=lI( j ),0

(Yi (t))2, (5)

Define ηi, j as the ratio of Ei, j to Ei,0, i = 1, 2, . . . , n, and
j = 1, 2, . . . , p; that is,

ηi, j = Ei, j

Ei,0
, (6)

and ηi, j represents the degree of matching between Yi (t)
and SI( j )(t). In addition, ηi, j ∈ [0, 1] and a larger value of
ηi, j indicate a better matching. Based on ηi, j , the detailed
steps to identify ŜI(t) from Y(t) can be listed as follows:

Step 1. Initially set the set of estimated independent source
signals ŜI(t) = ∅, and the set of remaining signals
� = {Y1(t), Y2(t), . . . , Yn(t)}.

Step 2. For each active working range of individual inde-
pendent operations—i.e., LI( j ) ≡ [lI( j ),0, lI( j ),1], j =
1, 2, . . . , p—do Steps 3 to 5.

Step 3. For each Yi (t) in �, calculate ηi, j based on Equation
(6).

Step 4. Find the largest ηi, j , denoted as ηk, j ; thus, Yk(t)
estimates the jth independent source signal; i.e.,
SI( j )(t).

Step 5. Set ŜI(t) = ŜI(t) ∪ Yk(t) and � = � − Yk(t).

3.3. Remove independent source signals from mixed sensor
signals

Although the linear transformation of dependent source
signals—i.e., DSD(t), is estimated after applying the ICA
method on the mixed sensor signals, the actual dependent
source signals SD(t) cannot be directly obtained because
the constant matrix D is unknown. To estimate SD(t), the
impact of the independent source signals should be elimi-
nated from the mixed sensor signals. The resultant reduced
sensor signals after removing the impact of the independent
source signals are called the reduced sensor signals denoted
as X̃(t). X̃(t) is subsequently used to estimate the dependent
source signals ŜD(t) based on the SCA method.

The following Corollary 1 shows the method to obtain
X̃(t) and the detailed proof of Corollary 1 is given in the
Appendix.

Corollary 1. The reduced sensor signals—i.e., X̃(t), t = 1, 2,
. . . , N—can be calculated as follows:

X̃(t) = UDŜD′(t) = X(t) − UIŜI(t), (7)

where UD ∈ �m×q is a matrix that is composed of the column
vectors of U corresponding to the signals in ŜD′(t), and U
is calculated as U = (WTW)−1WT ∈ �m×n; UI ∈ �m×p is a
matrix composed of the column vectors of U that correspond
to the source signals in ŜI(t); W is the unmixing matrix
in Equation (3), which is obtained after applying the ICA
method on the linear mixed sensor signals X(t).

Due to sensor noises and the estimation errors of the ICA
method, each of the reduced sensor signals X̃(t) obtained
from Corollary 1—i.e., X̃i (t), i = 1, 2, . . . , m—can be
modeled as follows:

X̃i (t) =
q∑

k=1

Ai,D(k)SDk(t) + τi (t) (8)

where Ai,D(k) is the element of AD at the ith row and the kth
column, i = 1, 2, . . . , m, and k = 1, 2, . . . , q; and τi (t), i =
1, 2, . . . , m, indicates the estimation error.

4. Estimation of dependent source signals using SCA

Based on the reduced sensor signals X̃(t), the estima-
tion of the dependent source signals—i.e., ŜD(t)—will be
further obtained by using the SCA method in the time
domain or in some linear transform domains. The ba-
sic idea of the SCA method is to first estimate AD; i.e.,
the kth column of AD is estimable if the kth dependent
source signal SD(k)(t) is known to be the dominant sig-
nal at a given time period or a feature subset in a lin-
ear transform domain. After obtaining AD, the dependent
source signals can be further estimated by using a statistical
method; e.g., the least squares estimation method based on
Equation (8).

4.1. Basic principle of SCA in the time or a linear transform
domain

Suppose that the kth dependent source signal SD(k)(t) is
dominant at a given time period [tk,a tk,b], where tk,a and
tk,b are the start time index and the end time index, respec-
tively. For example, as shown in Fig. 2, the source signal
SD(1) (preforming operation) is dominant within Segment
T2 with tk,a = 35 and tk,b = 100 obtained based on Table
1. In this situation, within the dominant time period [tk,a
tk,b], the ratio of two reduced sensor signals—i.e., X̃i (t) and
X̃j (t), denoted as λi, j (t)—is calculated as

λi, j (t) = X̃i (t)

X̃j (t)
. (9)
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Separation of mixed signals 785

Substituting Equation (8) into Equation (9):

λi, j (t) = Ai,D(k)SD(k)(t) + Ai,D(1)SD(1)(t) + · · · + Ai,D(k−1)SD(k−1)(t) + Ai,D(k+1)SD(k+1)(t) + · · · + Ai,D(q)SD(q)(t) + τi (t)
Aj,D(k)SD(k)(t) + Aj,D(1)SD(1)(t) + · · · + Aj,D(k−1)SD(k−1)(t) + Aj,D(k+1)SD(k+1)(t) + . . . + Aj,D(q)SD(q)(t) + τ j (t)

(10)

Because the dependent source signal SD(k)(t) is assumed
to be dominant at the time interval [tk,a tk,b], SD(k)(t) pro-
vides a dominant contribution to the reduced sensor signals
X̃h(t), h = 1, . . . , m; i.e., X̃h(t) ≈ Ah,D(k)SD(k)(t). In this case,
λi, j (t) can be further calculated as

λi, j (t) ≈ Ai,D(k)SD(k)(t)
Aj,D(k)SD(k)(t)

= Ai,D(k)

Aj,D(k)
(11)

Equation (11) shows that λi, j (t) is an estimation
of Ai,D(k)/Aj,D(k). Without loss of generality, assume
A1,D(k) �= 0. Then, λk,1(t), k = 2, . . ., m, can be es-
timated based on Equation (11) with j = 1. Thus,
[ 1 λ2,1(t), . . . , λm,1(t) ]T is an estimation of (1/A1,D(k))aD(k);
i.e., an estimation of the kth column of AD due to a scale
factor of A1,D(k). It needs to be noticed that the dominance
of a source is a sufficient condition of Equation (11), rather
than a necessary condition. However, in practice, if signal
k is not dominant, there is little chance that Equation
(11) is satisfied for consecutive time points. Therefore, this
linear relationship property has been extensively adopted
in the SCA literature to judge the dominance of a source
signal, and it is also used in this article.

Generally, the source signals overlap in the time domain;
thus, the sparse property of each dependent source signal
does not hold in the time domain. For example, as shown
in Fig. 2, the active working range of Station 2 (blocker
operation) is always overlapping with that of other stations.
In this case, a linear transformation is needed to satisfy
the sparse property in the transformed feature domain;
e.g., a frequency domain, a time/frequency domain, or a
wavelet domain. Suppose �, � ∈ �N×L is a selected linear
transform matrix that transforms source signals from the
time domain to a new feature domain. Based on Equation
(8):

X̃i (t)� =
q∑

k=1

Ai,D(k)SD(k)(t)� + τi (t)�. (12)

Let F̃i (θ) = X̃i (t)�(F̃i (θ) ∈ �1×L, θ = 1, 2, . . . , L, i
= 1, 2, . . . , m,) denote the transformed feature vec-
tor of the reduced sensor signals, and Fk(θ) = SD(k)(t)�,
(θ = 1, 2, . . . , L, k = 1, 2, . . . , q) represents the
transformed feature vector of the dependent source sig-
nals. If there exists a feature subset in the linear trans-
form domain that the kth dependent source signal—i.e.,
Fk(θ)—is dominant, the kth column of AD can be sim-
ilarly estimated by using Fk(θ) instead of SD(k)(t) based
on Equation (11). Specifically, the time domain can be

treated as a linear transform domain with � being cho-
sen as an N × N identity matrix (L is equal to N). Thus,

we will make no difference between the time domain and
the linear transform domain in the following discussion of
the article.

4.2. A novel SCA method to estimate AD using multiple
linear transforms

There are many different methods that can be used to es-
timate the mixing matrix AD reported in the SCA litera-
ture (Jourjine et al., 2000; Lewicki and Sejnowski, 2000;
Bofill and Zibulevsky, 2001; Zibulevsky and Pearlmutter,
2001; Yilmaz and Rickard, 2004; Abrard and Deville, 2005;
Li et al., 2006). However, most methods assume that in
a single linear transform domain (e.g., frequency domain,
time/frequency domain, or wavelet domain), all of the indi-
vidual source signals have some dominant components, and
this single linear transform is pre-given. In other word. each
of the column vectors of matrix AD can be estimated in a
single given linear transform domain. For example, Abrard
and Deville (2005) assumed that all of the source signals
have some dominant components in the time/frequency
domain; Li et al. (2006) assumed that for each of the source
signals there exist feature subsets in the wavelet domain
where this source signal is dominant. However, in practice,
it is usually unknown whether some dominant components
exist in the given linear transform domain for the source
signals. In addition, due to the complexity of the source sig-
nals, it is difficult to find one linear transform for which all
the source signals are dominant in the specific transformed
feature subsets. In this research, a novel SCA method is
proposed to estimate the mixing matrix AD based on mul-
tiple linear transform domains, which does not require that
all of the source signals are dominant in a given linear
transform domain. In this proposed SCA method, multi-
ple linear transform domains are checked, and a portion of
columns of AD are estimated in each of these linear trans-
form domains.

The following subsections are used to discuss the pro-
posed SCA method; i.e., how to estimate the column vectors
of matrix AD by using multiple linear transforms. Specifi-
cally, Section 4.2.1 discusses how to estimate a column vec-
tor of matrix AD based on the sampling data in a feature
subset where only one source signal is dominant. In Section
4.2.2, a statistical hypothesis test is established that can be
used to check whether two estimated column vectors are
statistically equivalent. Finally, Section 4.2.3 provides the
detailed implementation procedure for estimating matrix
AD by using multiple linear transforms.
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786 Yang and Jin

4.2.1. Estimation of a column vector using multiple linear
transforms

Most of the SCA methods in the literature assume that all of
the individual source signals have some dominant compo-
nents in a single linear transform domain. These methods
cannot be directly adopted for use in the case of multiple
linear transforms. For this purpose, a method is developed
to estimate a column vector of matrix AD in this subsection.

In this article, a multiple linear regression model is used
to represent the relationship between F̃i (θ), i = 2, 3, . . . , m,
and F̃1(θ) in the feature subset [θk,a, θk,b] as follows:

F̃i+1(θ) = ri+1,1 F̃1(θ) + υi (θ), i = 1, 2, . . . , m − 1,(13)

where ri+1,1 represents the unknown parameter and ri+1,1 =
Ai+1,D(k)/A1,D(k), υi (θ) ∈ �1×c denotes the estimation er-
ror vector that is assumed to be cross-correlated but
time independent and c denotes the number of potential
dominant features in the feature subset [θk,a θk,b]; thus
c = b − a + 1. In addition, υi (θ) is assumed to be nor-
mally distributed with the zero mean and covariance matrix

 ∈ �(m−1)×(m−1). Let R = [ r2,1 r3,1 . . . rm,1 ]T ∈ �(m−1)×1.
Vector [ 1 RT ]T estimates the kth column of matrix AD;
i.e., aD(k) subjects to a scale factor A1,D(k). Suppose in a fea-
ture subset θ ∈[θk,a, θk,b] of a linear transformed domain
the kth dependent source signal Fk(θ) is dominant. Based
on Equation (11), signals F̃i (θ) and F̃j (θ), i �= j , have a
linear relationship that can be represented by a line going
through the origin of the coordinates. Specifically, the scat-
ter plot of F̃i (θ), i = 2, . . . , m, versus F̃1(θ) in feature subset
[θk,a, θk,b] consists of m − 1 lines going through the origin
of the coordinates. Figure 4 shows a scatter plot of F̃i (θ), i
= 2, . . . , 5, versus F̃1(θ) in Segment T10; i.e., [672, 720] for

Fig. 4. Scatter plots of F̃i (θ ), i = 2, . . . , 5, versus F̃1(θ ) based
on the original data in segment T10 having one dominant source
signal.

the forging process shown in Fig. 1, in which the dependent
source signal of the finisher operation is dominant.

Let Zi = [ F̃i (θk,a) F̃i (θk,a+1), . . . , F̃i (θk,b) ]T ∈ �c×1 rep-
resent the transformed feature vector in the feature sub-
set [θk,a, θk,b] and Z = [ Z2 Z3, . . . , Zm ] ∈ �c×(m−1). In this
way, the linear regression model (13) can be generally repre-
sented as a multiple linear regression model of Z = Z1RT +
υ, and υ = [ (υ1(θ))T (υ2(θ))T, . . . , (υm−1(θ))T ] ∈ �c×(m−1).
The maximum likelihood estimation of R, denoted as
R̂ = [ r̂2,1 r̂3,1 . . . r̂m,1 ]T ∈ �(m−1)×1, is calculated as (Lewicki
and Sejnowski, 2000):

R̂ =
((

ZT
1 Z1

)−1
ZT

1 Z
)T

, (14)

and the estimated residuals, denoted as υ̂ ∈ �c×(m−1), are
obtained as

υ̂ =
[
I − Z1

(
ZT

1 Z1
)−1

ZT
1

]
Z. (15)

The estimate R̂ has a normal distribution with mean R
and a covariance matrix (ZT

1 Z1)−1
; and the maximum
likelihood estimation of covariance matrix 
 is υ̂

T
υ̂/c.

In the SCA literature, to identify the feature subsets
where only one source signal is dominant, the feature set in
the linear transform domain is divided into feature subsets
that do not overlap with other feature sets. In general, the
division criterion depends on the selected linear transform.
For example, the divided feature subsets via an STFT gen-
erally have the same cardinality in the time and frequency
regions. In this article, the linear relationship between F̃i (θ),
i = 2, 3, . . . , m, and F̃1(θ) is checked in each feature subset.
The problem of checking whether the response variables
and the independent variable have a linear relationship has
been studied in the literature. For a detailed description of
this study, please refer to Cohen (2003). If the linear rela-
tionship between F̃i (θ), i = 2, 3, . . . , m, and F̃1(θ) (modeled
in Equation (13)) holds in the feature subset this indicates
that one single source signal is dominant in this feature
subset.

4.2.1.1. Statistical equality testing of two estimated columns.
In practice, a source signal can have dominant components
in multiple feature subsets based on which of the estimated
columns correspond to the same column vector of AD.
However, due to random noise, small differences exist in
these estimated columns. In this article, a statistical hypoth-
esis testing procedure is established to test the statistical
equality of two estimated columns. Since the column of AD
is determined by vector R, the problem of testing whether
two estimated columns are statistically equivalent can be
formulated as testing the statistical equality of two sample
vectors—i.e., R̂k and R̂ j —which are estimated based on
two different feature subsets. Here a superscript i is used to
indicate that the ith feature subset of sampling data is used
to estimate Ri , 
i , and Zi , i = k or j, k �= j , which will be
used in the following discussion. Since the mean vector of
R̂i equals Ri , the statistical testing procedure is used to test
the equality of the two mean vectors; i.e., Rk and R j .
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Separation of mixed signals 787

Define the test hypothesis as

H0 : Rk = R j ,

H1 : Rk �= R j
(16)

and define the statistic � as

� = (R̂k − R̂ j )T�−1(R̂k − R̂ j ) (17)

where � = �k + � j ∈ �(m−1)×(m−1), and �i is calculated as
�i = ((υ̂i )Tυ̂

i
/((ci − 1) × (Zi )TZi )) ∈ �(m−1)×(m−1).

The decision rule to test hypothesis (16) is given in Propo-
sition 2 and the detailed proof of Proposition 2 is given in
the Appendix. The principle is to test the equality of two
mean vectors without assuming the equality of the covari-
ance matrix.

Proposition 2. The hypothesis testing (16) is accepted if and
only if

� ≤ γ (m − 1)
(γ − m + 2)

Fm−1,γ−m+2 (α) , (18)

where the degree of freedom γ is calculated as

γ = (m2 − m)
1/(c1 − 1) × {tr[(�1�−1)2] + [tr(�1�−1)]2} + 1/(c2 − 1) × {tr[(�2�−1)2] + [tr(�2�−1)]2} (19)

andFi, j (α) is the (1 − α) percentile for F distribution with
degrees i and j.

4.2.2. Implementation procedures for estimating matrix AD
using multiple linear transforms

Based on Sections 4.2.1 and 4.2.2, a systematic implemen-
tation procedure is provided in this section for estimating
AD, which is described in detail in the following.

Step 1. Initially set the estimated set of columns as � = ∅.
Step 2. Transform the reduced sensor signals X̃i (t), i = 1,

. . . , m, into a linear transform domain based on
Equation (12).

Step 3. Check the linear relationship between F̃i (θ), i =
2, 3, . . . , m, and F̃1(θ) for each feature subset
and identify the feature subsets in which only one
source signal is dominant; i.e., check whether the
linear relationship between F̃i (θ), i = 2, 3, . . . , m,
and F̃1(θ) in Equation (13) holds.

Step 4. For each feature subset k in which only one source
signal is dominant, denoted as [θk,a, θk,b], in the
linear transform domain.
4.1. Estimate the column of matrix AD, denoted as

R̂k, based on Equation (14).
4.2. If � = ∅, set � = {R̂k} and go to Step 5;

else, do Steps 4.2.1 to 4.2.3
4.2.1. For each of the existing columns in �,

denoted as R̂ j , test the statistical equal-
ity of R̂k and R̂ j ; i.e., calculate statistics
� based on Equation (17) and test hy-
pothesis (16) based on Proposition 2.

4.2.2. If the null hypothesis in Equation (16)
is not rejected for column R̂ j in �, this
indicates that R̂k and R̂ j estimate the
same column of AD. In this case, an
estimation with the small variance will
be chosen; i.e., if condition |υ̂k| < |υ̂ j |
holds (where | • | denotes the matrix de-
terminant), substitute R̂k for R̂ j in �.

4.2.3. If the null hypothesis in Equation (16)
is rejected for all of the elements in �,
this indicates that R̂k estimates a new
column of AD, and set � = � ∪ R̂k.

Step 5. If the cardinality of � equals q, all of the q columns
of AD have been found; otherwise, continuously
choose a new linear transform � and go back to
Step 2.

The procedure will stop when achieving either of two
situations: (i) all of the q columns of matrix AD have been
successfully estimated; or (ii) it is impossible to obtain ma-
trix AD using all the employed linear transforms.

5. Case study

The progressive forging process, as shown in Fig. 1, is used
as a case study to demonstrate the developed method. In
this case study, a minimum number of five mixed sensor sig-
nals have to be collected to allow estimation of the individ-
ual forces of the dies. In order to demonstrate the generality
of the proposed method and to show that it is applicable
to an arbitrary sensing system, the following arbitrary mix-
ing matrices AI and AD are simulated, where each column
AI and AD is normalized such that (aI( j ))

TaI( j ) = 1 and
(aD(i ))

TaD(i ) = 1.

AI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.55 0.57

0.21 0.67

0.48 0.26

0.53 0.44

0.38 0.65

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, AD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.29 0.59 0.15

0.13 0.29 0.72

0.71 0.54 0.23

0.35 0.25 0.58

0.46 0.46 0.26

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The sensor noise ε is assumed to follow a multivariate
normal distribution MN(0, ζ 2I), where I is an m × m iden-
tity matrix, and ζ 2 is set to 0.1. Figure 5 illustrates the
simulated mixed sensor signals X(t).
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788 Yang and Jin

Fig. 5. Simulated mixed sensor signals X(t).

Table 2. Energy ratio ηi, j calculated in active working range
LI( j ) ≡ [lI( j ),0, lI( j ),1], j = 1, 2

i

ηi, j 1 2 3 4 5

LI(1) = [196, 353] 0.97 0.60 0.24 0.08 0.10
LI(2) = [100, 268] N/A 0.96 0.05 0.25 0.42

5.1. Estimation of independent source signals

The ICA method is first applied to the mixed sensor signals
X(t) to estimate the independent source signals SI(t). Fig-
ure 6 shows the estimated signals after applying the ICA
method; i.e., Yi (t), i = 1, 2, . . . , 5. To identify the estimated
independent source signals, the algorithm in Section 3.2
was applied and Table 2 shows energy ratio ηi, j calculated
in time period LI( j ) ≡ [lI( j ),0, lI( j ),1], j = 1, 2, based on Equa-
tion (6). In the first step of the algorithm, Y1(t) was chosen
to estimate SI(1)(t) since η1,1 has the maximum value for
the active working range LI(1) = [196, 353]. Similarly, Y2(t)
was chosen to estimate SI(2)(t) in the second step. Note that
because Y1(t) was already chosen at the first step, η2,1 will
not be calculated for LI(2).

Thus, Y1(t) and Y2(t) estimate the independent source
signals SI(1)(t) and SI(2)(t), generated from station 4 and
station 5, respectively, while Y3(t), Y4(t), and Y5(t) estimate
the linear combination of dependent source signals. This
can also be seen in Fig. 6.

Next, the impacts of independent source signals—i.e.,
SI(1)(t) and SI(2)(t)—on the mixed sensor signals were elim-
inated, and the reduced sensor signals, X̃i (t), i = 1, 2, . . . ,

5, were calculated based on Corollary 1.

Fig. 6. The estimated signals after applying the ICA method; i.e.,
Yi (t), i = 1, 2, . . . , 5.

5.2. Estimation of dependent source signals

Based on the implementation procedures given in Section
4.2.3, the SCA method was used to obtain the estimated
dependent source signals ŜD(t). In the first step, the time
domain was directly considered with � being chosen as an
N × N identity matrix. Since we only needed to estimate
the dependent source signals, the data segmentation needed
to be re-conducted based on only those dependent source
signals; i.e., only based on the active working ranges of sta-
tions 1 to 3 to divide the whole cycle signals. The resultant
seven new data segments were denoted as TD(k), (k = 1,
2, . . . , 7), and their start and end time indexes are given
in Table 3. The relationship between these seven new data
segments and the original 11 data segments (Tk, k = 1, 2,
. . . , 11), as shown in Fig. 2, are also shown in Table 3.

Since the sensor signals in segments TD(1) and TD(7) only
consist of noises, TD(1) and TD(7) will not be further consid-
ered in estimating the dependent source signals. Figure 7
shows the scatter plots of F̃i (θ), (i = 2, 3, 4, 5) versus F̃1(θ)
in each data segment TD(k) (k = 2, 3, . . . , 6). From Fig. 7, it
can be seen that the linear relationship between F̃i (θ) and
F̃1(θ) in Equation (13) is held in two segments TD(2) and
TD(6). The estimation of R in data segments TD(2) and TD(6),
denoted as R̂1 and R̂2, respectively, were then calculated
based on Equation (14) using the original sensing signal
in segments TD(2) and TD(6), respectively. The correspond-
ing estimation results are R̂1 = [ 0.50, 0.92, 0.43, 0.78 ]T

and R̂2 = [ 4.71, 1.50, 3.78, 1.72 ]T. Next, to test whether

Table 3. Time periods TD(k), k = 1, 2, . . . , 7

TD(1) = T1 TD(2) = T2 + T3 TD(3) = T4 + T5 + T6 + T7 TD(4) = T8 TD(5) = T9 TD(6) = T10 TD(7) = T11

[0, 35] [35, 179] [179, 436] [436, 494] [494, 672] [672, 720] [720, 780]
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Separation of mixed signals 789

Fig. 7. Scatter plots of F̃i (θ ), i = 2, 3, 4, 5, versus F̃1(θ ) in time periods TD(i ), i = 2, 3, . . . , 6.

[ 1 (R̂1)T ]T and [ 1 (R̂2)T ]T estimate the same column of
matrix AD, statistic � and the degree of freedom γ were
calculated based on Equation (17) and Equation (19), re-
spectively. Since

� = 35987 >
15.86 × (5 − 1)
(15.86 − 5 + 2)

F5−1,15.86−5+2(0.05) = 15.74,

based on Proposition 2, we rejected the null hypothesis
in Equation (16); i.e., [ 1 (R̂1)T ]T and [ 1 (R̂2)T ]T estimate
different columns of AD. Thus, we get � = {R̂1, R̂2}.

Since the cardinality of � is equal to two, which is less
than the number of dependent source signals, it is clear that
not all of the three columns of matrix AD can be estimated
in the time domain. In other words, only two dependent
source signals have dominant components in the time do-
main. This can be verified by reference to Fig. 2, in which
the source signal generated by the preforming operation
and that generated by the finisher operation are dominant
in data segment TD(2) (i.e., T2 + T3) and TD(6) (i.e., T10),
respectively, after removing independent source signals.

To estimate the remaining column of matrix AD, we used
a linear transform based on Equation (12) to transform the
reduced sensor signals X̃i (t), i = 1, 2, . . . , 5, into a feature
domain. In this case study, � was selected as the STFT with
the Hamming window (Gaeta and Lacoume, 1990). Each
data segment TD(i ), (i = 2, 3, . . . , 6) was further divided
into seven sub-periods using the default parameters of the
MATLAB program (Krauss et al., 1993). Since the features
of the reduced sensor signals in the STFT domain—i.e.,
F̃i (θ), i = 1, 2, . . . , 5—consist of complex numbers, the
modulus of F̃i (θ), denoted as |F̃i (θ)|, was used. Figure 8
illustrates the scatter plot of |F̃i (θ)|, i = 2, 3, 4, 5, ver-
sus |F̃1(θ)| in the first and seventh sub-periods of the data
segment TD(3). It can be seen that the linear relationship be-
tween |F̃i (θ)| and |F̃1(θ)| in Equation (13) holds in the sev-
enth sub-period of segment TD(3). Using the sample points
in the seventh sub-period of TD(3) in the STFT domain, R3

is estimated as R̂3 = [ 0.47, 1.92, 0.93, 1.42 ]T.
Then, the hypothesis test (16) was used to test whether R̂3

was statistically equivalent to R̂1 or R̂2. Since the hypothesis
test (16) was rejected for both situations, it is apparent
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790 Yang and Jin

Fig. 8. Scatter plot of |F̃i (θ )|, i = 2, 3, 4, 5, versus |F̃1(θ )| in the
first and seventh sub-periods of TD(3) in the STFT domain.

that [ 1 (R̂3)T ]T estimates a new column of matrix AD. Let
âD(i ) = [ 1 (R̂i )T ]T, i = 1, 2, 3, âD(i ) estimates one of the
three columns of matrix AD. Thus, the estimated matrix of
AD is given as ÂD ≡ [ âD(1), âD(2), âD(3) ]. After normalizing
ÂD so that (âD(i ))TâD(i ) = 1, the resultant matrix, denoted
as Â′

D, could be written as

Â′
D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.28 0.15 0.56

0.13 0.72 0.27

0.72 0.23 0.57

0.34 0.58 0.27

0.52 0.26 0.48

⎤
⎥⎥⎥⎥⎥⎥⎦

.

After obtaining Â′
D, the estimated source signals could

be calculated by using the least squares method; i.e.,
ŜD(t) = ((Â′

D)TÂ′
D)−1(Â′

D)TX̃(t). The resultant signals ob-
tained using the proposed SCA method are shown in Fig.
9, in which the solid curves represent the true dependent
source signals—i.e., SD(1)(t), SD(2)(t), and SD(3)(t)—and the

Fig. 9. Results of the SCA method.

dashed curves represent the estimated dependent source
signals. From Fig. 9, it can be seen that the SCA estimation
method is able to closely reproduce the data.

6. Conclusions

This article proposes a method for separating general mixed
source signals, which may include both independent and
dependent signals. The developed estimation method con-
sists of two major steps that combine the ICA and SCA
methods. In the first step, the independent source signals
are estimated based on the ICA method. Although the
assumption required by the ICA method is not valid for
all source signals, it has been proved in this article that
the estimated signals after using the ICA method surely
include the estimated independent source signals. In the
second step, the impacts of the independent source signals
are eliminated from the mixed sensor signals. The remain-
ing sensing signals are then used to estimate the dependent
source signals based on the SCA method.

Different from the existing literature, this article devel-
oped an SCA method to estimate the dependent source
signals without requiring the assumption that every depen-
dent source signal has dominant components by using a
single given linear transform. For this purpose, a statistical
testing method is proposed to check whether two estimated
columns of the mixing matrix are statistically equivalent
under multiple linear transforms. A case study on a forging
process is conducted to demonstrate the effectiveness of the
developed method.

In the future, general SPC methods will be applied to
monitor the estimated individual source signals, which
can provide explicit diagnostic information for individual
operations to enhance the system’s diagnostic abilility.
Another future task will be to extend the developed
separation method to a general case in which there may
exist non-linear relationships between source signals and
mixed sensor measurements.
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Appendix

Proof of Proposition 1. It is assumed that the indepen-
dent/dependent source signals are non-Gaussian and that

the sensor noise—i.e., ε(t)—is a white noise and inde-
pendent of the source signals; i.e., ε(t) ∼ MN(0, ζ 2I). The
method in Blanchard et al. (2006) can be used to obtain the
subspace that only contains the non-Gaussian source sig-
nals based on the mixed sensor measurements X(t). There-
fore, the sensor noises ε(t) will be considered in the follow-
ing discussion.

Substituting Equation (3) into Equation (2) leads to

Y(t) = W × [AI AD] ×
[

SI(t)

SD(t)

]
(A1)

Let

Y(t) =
[

YI(t)

YD(t)

]
,

where YI(t) ∈ �p×N and YD(t) ∈ �q×N; and let

W =
[

W1

W2

]
,

where W1 ∈ �p×m and W2 ∈ �q×m, such that YI(t) and
YD(t) estimate independent source signals SI(t) and de-
pendent source signals SD(t), respectively. YI(t) and YD(t)
can be calculated based on Equation (A1) as

YI(t) = W1AISI(t) + W1ADSD(t)

YD(t) = W2AISI(t) + W2ADSD(t)
(A2)

Next we prove W1AD = 0 and W2AI = 0. First, we prove
W2AI = 0. The estimated result of the ICA method—i.e.,
YI(t) and YD(t)—are mutually independent (Hyvrinen et
al., 2001). Suppose W2AI is not equal to zero. By arranging
the order of columns appropriately while keeping track of
the column indices, a reduced row echelon form of W2AI
can be generally written in the form of[

Ir D

0 0

]
,

where r = rank(W2AI) and Ir is an r × r identity ma-
trix that is a linear transformation of the submatrix
of W2AI. Based on the multivariate Skitovitch–Darmois
theorem (Skitovich, 1953, 1954), the signals in SI(t)
corresponding to Ir are Gaussian, which contradicts the
assumption that SI(t) are non-Gaussian. Thus, W2AI = 0.
Similarly, it can be proved that W1AD = 0. Thus, we get
YI(t) = W1AISI(t) and YD(t) = W2ADSD(t). Let ŜD′(t) =
YD(t) and D = W2AD, ŜD′(t) estimates DSD(t).

Since it is assumed that all of the source signals SI(t) are
independent, based on Skitovitch–Darmois theory (Ski-
tovich, 1953, 1954) and the ICA theory (Hyvrinen et
al. 2001), W1AI is a diagonal matrix due to a permu-
tation of the columns. As a result, YI(t) estimates the
source signals SI(t) due to scales and a permutation; i.e.,
YI(t) = ŜI(t).�
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Proof of Corollary 1. From Equation (2), the mixed sensor
signals can be further calculated as

X(t) = [AIAD] ×
[

SI(t)

D−1DSD(t)

]
+ ε(t)

= [AIADD−1] ×
[

SI (t)

DSD(t)

]
+ ε(t).

Based on Proposition 1, the estimated signals obtained us-
ing the ICA method are Y(t) = ŜI(t) ∪ ŜD′(t), where ŜI(t)
estimates the independent source signals SI(t) and ŜD′(t)
estimates the linear combinations of dependent source sig-
nals; i.e., DSD(t). Suppose U = (WTW)−1WT; let UD ∈
�m×q be a matrix composed of the column vectors of U,
which corresponds to the source signals in ŜD′(t) and let
UI ∈ �m×p be a matrix composed of the column vectors of
U that correspond to the source signals in ŜI(t). Based on
the ICA method, UI estimates AI. As a consequence, UI

UIŜI(t) estimates AISI(t); i.e., the impact of the indepen-
dent source signals on the mixed sensor signals.

Also, we have that:

UDŜD′(t) + UIŜI(t) = UY(t) = (WTW)−1WTY(t). (A3)

Substituting Equation (3) into Equation (A3) results in

UDŜD′(t) + UIŜI(t) = (WTW)−1WTWX(t) = X(t).
(A4)

Thus, X̃(t) = X(t) − UIŜI(t) = UDŜD′(t) �

Proof of Proposition 2. Because R̂i can be estimated based
on feature sets in different linear transform domains, the
covariance matrix of υ i (θ)—i.e., 
i —in Equation (13) may
be different. Thus, hypothesis testing Equation (16) is to
test the equality of the two mean vectors—i.e., Rk and
R j —under heteroscedastic dispersion matrices.

Let �̃i = (υ̂i )Tυ̂
i ∈ �(m−1)×(m−1). �̃i and R̂i have the fol-

lowing properties (Krishnamoorthy and Yu, 2004): �̃i has
a distribution of Wm−1(ci − 1, 
i ), where Wk(a, B) denotes
the k-dimensional Wishart distribution with the degree of

a and scale matrix B. R̂i has a normal distribution with
mean R and covariance matrix ((Zi

1)TZi
1)−1
i . In addition,

R̂ j , R̂k, �̃ j , and �̃k, j �= k, are independent variables.
Let �i = (�̃i/(ci − 1)(Zi )TZi ) ∈ �(m−1)×(m−1). �i has a

Wishart distribution; i.e., Wn−1(ci − 1, (
i/(ci − 1)
(Zi )TZi )). Let � = �k + � j ∈ �(n−1)×(n−1) and


̃ = 
 j

(Z j )TZ j
+ 
k

(Zk)TZk
.

Based on Herault and Jutten (Krishnamoorthy and Yu,
2004), 
̃−1/2�
̃−1/2 has a distribution of Wm−1(γ, Im−1/γ )
approximately, where Im−1 ∈ �(m−1)×(m−1) is an identity ma-
trix and γ is calculated in Equation (19). As a result,
(R̂k − R̂ j )T�−1(R̂k − R̂ j ) has an approximate distribution
of (γ (m − 1)/(γ − m + 2))Fm−1,γ−m+2(α). Thus, hypothe-
sis testing Equation (16) is accepted if and only if Equation
(18) holds. �
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