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ABSTRACT 
A novel algorithm is developed for feature selection and parameter tuning in quality monitoring of manufacturing processes 
using cross-validation. Due to the recent development in sensing technology, many on-line signals are collected for 
manufacturing process monitoring and feature extraction is then performed to extract critical features related to 
product/process quality. However, lack of precise process knowledge may result in many irrelevant or redundant features. 
Therefore, a systematic procedure is needed to select a parsimonious set of features which provide sufficient information for 
process monitoring. In this study, a new method for selecting features and tuning SPC limits is proposed by applying k-fold 
cross-validation to simultaneously select important features and set the monitoring limits using Type I and Type II errors 
obtained from cross-validation. The monitoring performance for production data collected from ultrasonic metal welding of 
batteries demonstrates that the proposed algorithm is able to select the most efficient features and control limits and thus 
leading to satisfactory monitoring performance. 
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INTRODUCTION 
 

On-line process monitoring is crucial for product quality 
and process stability in manufacturing [1]. For example, in 
electric vehicle battery manufacturing, quality monitoring 
for battery joining is of great importance because any low-
quality joints may result in a failure of the entire battery 
pack, causing high production loss. Thus, on-line process 
monitoring has received great attention over the past several 
decades. 

Among various monitoring methods, the classical 
statistical process control (SPC) method has been widely 
used in monitoring manufacturing processes [2]. Control 
charts are the main SPC tools to determine whether a 
manufacturing process is in a state of statistical control. 
Two of the most popular types of control charts are the 
univariate Shewhart control chart and Hotelling T2 control 
chart [3]. Exemplary applications of control charts in 
manufacturing process monitoring can be found in [4] and 
[5]. 

In order to monitor manufacturing processes, various 
sensor signals, such as force, acceleration, temperature, 
pressure and acoustic emission, are collected on-line to 
gather process information. Due to the large volume of data, 
feature extraction is often carried out to reduce the 

dimensionality of data. Efficient application-dependent 
features are constructed when expert knowledge about 
manufacturing processes is available. Whereas, if a lack of 
expert knowledge is encountered, some general data-driven 
dimensionality reduction techniques can help. Examples of 
such techniques include Principal Component Analysis 
(PCA) [6], kernel PCA [7], semidefinite embedding [8], 
and wavelets analysis [9]. 

In manufacturing, when a new process is initially 
implemented for production, it often occurs that a thorough 
physical understanding of the process is not available. For 
example, ultrasonic metal welding is recently utilized to 
join lithium-ion batteries, but there is insufficient expert 
knowledge about this process. Thus, signal features without 
good physical understanding may be irrelevant or redundant. 
Under this circumstance, feature selection is commonly 
applied to pick a minimally sized subset of features for 
monitoring. By removing a large number of irrelevant and 
redundant features, feature selection is able to help avoid 
overfitting, improve model performance, provide more 
efficient and cost-effective process monitoring, and acquire 
better insights into the underlying processes that generated 
the data. 

Generally speaking, feature selection techniques can be 
divided into three categories in terms of means of 
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combining feature subset selection search with the 
classification model construction: filter methods, wrapper 
methods and embedded methods [10]. Filter techniques 
determine the relevance of features by looking only at the 
intrinsic properties of the data. In wrapper methods, the 
model hypothesis search is embedded within the feature 
subset search. Embedded techniques build the feature 
subset search into the classifier construction. A summary of 
the advantages and disadvantages of each type of method 
and some examples of these methods can be found in [10]. 

In this study, a new feature selection algorithm based on 
cross-validation is developed for quality monitoring of 
manufacturing processes. The method belongs to the 
category of wrapper methods. Cross-validation is a 
common statistical technique for evaluating how the results 
of a statistical analysis will generalize to an independent 
data set [11]. It is mainly used to evaluate how accurately a 
predictive model will perform independent of the training 
dataset. In this paper, cross-validation is applied to selecting 
significant features and setting monitoring limits 
simultaneously, based on Type I (α) and Type II (β) error 
rates calculated from validation tests. 

The rest of this paper is organized as follows. We start 
by presenting the details of the proposed feature selection 
algorithm. Then the proposed scheme is utilized for feature 
selection and control limits tuning for monitoring of 
ultrasonic metal welding in battery assembly processes. 
Finally conclusions are presented. 
 
FEATURE SELECTION AND PARAMETER 
TUNING BASED ON CROSS-VALIDATION 
 

In the proposed feature selection and parameter tuning 
algorithm, we adopt the stepwise forward feature selection 
to select the optimal feature subset from candidate features. 
Forward selection is a greedy search strategy and is 
particularly computationally advantageous and robust 
against overfitting [12]. In some cases, this search strategy 
may alleviate the problem of overfitting, as illustrated in 
[13]. Forward selection was first utilized in [14] for 
measurement/feature selection to determine the best subset 
of measurements/features for pattern classification, and it is 
still widely used as a feature selection scheme [15]. 
Forward feature selection starts the search with an empty 
feature subset. First, all the features are considered for 
possible selection, and the one feature that performs the 
classification the best is included in a subset. Then a new 
step is started, and the remaining features are considered for 
inclusion. This is repeated until a prespecified number of 
features have been included in the subset. Usually the 
search is repeated until all features are included for 
comparison purpose. 

Cross-validation is a statistical technique for evaluating 
and comparing learning algorithms by partitioning data into 
two sets: one used for model training and the other used for 
model validation. This method is applicable for the 

performance comparison of different predictive modeling 
procedures [16], as well as for variable selection [17]. 

In this study, the k-fold cross-validation is employed for 
simultaneous feature selection and SPC parameter tuning. 
The original sample is randomly partitioned into k mutually 
exclusive subsamples/folds of equal (or approximately 
equal) size. Then k iterations of training and validation are 
performed such that within each iteration one different 
subsample is held-out for validation while the remaining 
k−1 subsamples are used for training. After the k iterations 
are finished, the k results can be averaged (or otherwise 
combined) to give a single estimation. In this method, all 
observations are used for both training and validation, and 
each observation is used for validation exactly once. In 
practice, 10-fold cross-validation is widely used. 
 
 

 
 
Figure 1. Feature selection and SPC limits tuning. 
 
 

In the algorithm, candidate features are denoted by f1, 
f2, … , fN, and the total number of features is N. The 
percentile limits are used as control limits. It is assumed 
that the total number of candidate percentile limit sets is M, 
and the mth set is denoted by P(m), where m = 1, 2, … , M. 
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Each percentile limit set includes a lower limit and an upper 
limit, namely, 
 [ ]( ) ,ml mum p p=P  (1) 
where pml and pmu are lower and upper percentile limits, 
respectively. 

Figure 1 shows the proposed algorithm for forward 
feature selection and SPC limits tuning, and each forward 
feature selection step is performed using cross-validation. 
Figure 2 illustrates how to use cross-validation to select the 
nth feature from remaining N – n + 1 features in forward 
feature selection for the mth percentile limit set. 
 
 

 
 
Figure 2. Forward feature selection based on cross-
validation. 
 
 

For each set of percentile limits P(m), we perform 
forward feature selection using cross-validation, as 

illustrated in Figure 2. The forward selection criterion is 
given by 
 min  ,mn mn mnR A Bα β= +  (2) 
where m = 1, 2, … , M; n = 1, 2, … , N; A and B are penalty 
coefficients for α error rate and β error rate, and they can be 
tuned according to different monitoring schemes. For 
example, if β error rate is of higher concern, and then B can 
be set higher correspondingly. 

For each limit set, an arrangement of candidate features 
is obtained, as given by Eq. (3). 
 (1) (2) ( )( ) ,   ,   ,  .m m m Nm f f f =  F   (3) 
Meanwhile, corresponding α error rates as well as β error 
rates are also calculated stepwise, and we record them in 
vectors, as shown by Eqs. (4) and (5). 
 [ ]1 2,  ,   ,  .m m mNα α α  (4) 

 [ ]1 2,  ,   ,  .m m mNβ β β  (5) 
After performing forward feature selection for all 

percentile limit sets, we can select from 1 to N features for 
each set, and therefore there are N available choices per set. 
Since we have M candidate percentile limit sets, hence there 
are in total MN combinations of feature subset and SPC 
limits. Based on αmn’s and βmn’s, the optimal combination 
of feature subset and SPC limits is then selected for 
monitoring. 
 
APPLICATION 
 

In this section, the proposed algorithm is applied to 
select features and tune SPC limits for quality monitoring 
of ultrasonic metal welding of batteries. Ultrasonic metal 
welding process is introduced first. Then 81 candidate 
features are extracted. Fisher’s discriminant ratio is applied 
for feature screening. Finally training and test results are 
presented. 
 
Ultrasonic Metal Welding 
 

Ultrasonic metal welding is a solid-state bonding 
process which uses a high frequency ultrasonic vibration 
energy to generate oscillating shears between metal sheets 
clamped under pressure. A typical ultrasonic metal welding 
system is shown by Figure 3. The advantages of using 
ultrasonic welding for joining dissimilar and conductive 
materials are discussed in [18]. Recently, ultrasonic metal 
welding has been adopted for battery tab joining in vehicle 
battery pack manufacturing. In battery pack manufacturing, 
creating reliable joints between battery tabs is critical 
because one single low-quality connection may cause 
performance degradation or failure of an entire battery pack. 
Therefore, it is important to evaluate the quality of all joints 
prior to connecting the modules and assembling the battery 
pack. 

Initially, 100% manual inspection was employed for 
offline quality check at the beginning of production launch.  
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This is undesirable for several reasons. First,  this checking 
method is expensive when production rate is high. Second, 
manual inspection is unreliable since the quality decisions 
are made largely based on inspectors’ feelings, and tired 
inspectors can easily make mistakes. Finally, the offline 
inspection is not able to report process changes in a timely 
manner. When a significant process change occurs, it may 
take a long time before the battery assembly plant’s 
attention is drawn, and during this period maybe more 
defective modules may be produced, which will increase 
the production cost significantly. 
 
 

 
 
Figure 3. A typical ultrasonic metal welding system. 
 
 

In order to ensure high quality joints and reduce 
production cost, an on-line quality monitoring system is 
necessary. In this research, two sensors, i.e., watt meter and 
microphone, are used to collect on-line process information. 
Due to the short duration of welding processes, usually 
shorter than 0.8s, a high sampling rate, such as 100kHz, is 
needed, and therefore high density data are collected during 
welding. For on-line monitoring, quality decisions are 
required to be made within a very short time, which is 
challenging in the presence of high volume data. Thus 
feature extraction and feature subset selection are of great 
significance for computational efficiency. 

In this case study, due to the high cost brought by 
misdetection, the monitoring of battery joining processes 
requires a near zero β error rate. 
 
Feature Extraction 
 

Watt meter and microphone signals are employed for 
process monitoring of ultrasonic metal welding. Figure 4 
and Figure 5 show typical signals from these two sensors. 
In addition, several process data such as the total weld time, 
total energy, maximum power, tool displacement before 
vibration, and tool displacement after vibration, are 
recorded through the welding system without external 
sensors. These data actually indicate the process conditions 
and thus are also included in the candidate feature set. 
Table 1 gives indices and names of all candidate features. 
 
 

 
 
Figure 4. A typical power signal and corresponding 
features. 
 
 

 
 
Figure 5. A typical microphone signal. 
 
 
Table 1. Features and their indices. 
 

Index 1 2 3 4 5 

Feature E H1 H2 PP T 
Index 6 7 8 9 10 

Feature H H*T/2 riP riDur riSurge 

Index 11 12 13 14 15 

Feature riSlope riE dDur dDepth dSlope 

Index 16 17 18 19 20 

Feature dE raDur raPar1 raPar2 raRSE 
Index 21 22 23 24 25 

Feature raE P_20L P_20C P_20R P_40L 

Index 26 27 28 29 30 

Feature P_40C P_40R P_F20 P_F40 P_E 
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Index 31 32 33 34 35 
Feature W_20L W_20C W_20R W_40L W_40C 

Index 36 37 38 39 40 

Feature W_40R W_F20 W_F40 W_E dP 

Index 41 42 … 81  

Feature P(1) P(2) … P(41)  

 
 
Feature Screening Based on Fisher’s Discriminant Ratio 
 

With the limited engineering knowledge about 
monitoring signals used in the ultrasonic welding operation, 
some previously defined features may contain little 
information about welding quality, so it is needed to carry 
out feature screening prior to feature selection using cross-
validation in order to reduce the extensive computations 
required in the next step of feature selection. 

In this case study, Fisher’s discriminant ratio is applied 
to perform initial feature screening in a computationally 
simple and fast manner. Fisher’s discriminant ratio was first 
introduced in [19], and it provides a separability measure 
for feature selection [20]. A larger ratio indicates more 
significant difference between two classes, and thus a better 
feature. 

The Fisher’s discriminant ratio for a feature is defined 
as 

 
2

1 2
2 2
1 2

| |
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s s
µ µ−
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where µ1 and µ2 are means of two classes, i.e., good welds 
and bad welds, 𝑠12 and 𝑠22 represent variances of two classes. 

Fisher’s discriminant ratios are calculated for all 
features, and then the ratios are ranked from largest to 
smallest. We select 40 features with ratios ranking from 1 
to 40 as a pool of feature candidates. Table 2 lists features 
selected by Fisher’s discriminant ratio and corresponding 
ratios in descending order. 
 
 
Table 2. Features selected by Fisher’s discriminant ratio. 
 

Index 2 6 7 3 30 43 29 44 

Ratio 8.83 7.14 5.93 2.61 2.28 1.23 1.19 1.17 

Index 10 27 31 47 45 46 25 48 

Ratio 1.16 1.14 1.07 1.06 1.06 1.05 1.04 1.04 

Index 24 5 49 28 50 37 80 79 

Ratio 1.01 0.94 0.94 0.84 0.82 0.79 0.75 0.74 

Index 76 78 38 75 77 81 74 51 

Ratio 0.74 0.74 0.73 0.73 0.73 0.73 0.70 0.69 

Index 73 71 72 34 70 22 69 52 

Ratio 0.68 0.66 0.66 0.66 0.64 0.62 0.62 0.58 

 
 

Training Results 
 

The training data set is collected from production in a 
battery assembly plant. The data size is 4500 with 4445 
good welds (98.78%) and 55 bad welds (1.22%). 

This data set is highly imbalanced in class size, i.e., the 
bad weld class is only 1.22% of all welds. In addition, β 
error rate is of higher concern, and near zero β error rate is 
desirable. Hence, we modify the partition method such that 
a case where no bad welds are included in training data set 
can be avoided when cross-validation is performed. In this 
case study, 10-fold cross-validation is applied. We partition 
the good weld data from training set into 10 folds. While 9 
folds are used for learning, the union of the remaining fold 
and all bad weld data is used as validation data. 

Candidate features approximately follow normal 
distributions, and therefore, symmetric control limits are 
used, namely in Eq. (1), we have pmu + pml = 1, and Eq. (1) 
then becomes 
 [ ]( ) 1 ,m mm p p= −P  (7) 
where pm is 0.025, 0.026, … , 0.05. 

In addition, in order to ensure a near zero β error rate, 
we set A = 0, and B = 1 in Eq. (2) for forward feature 
selection, and it becomes 

 min  .mn mnR β=  (8) 
Consequently in this case, the performance criterion used in 
forward selection is β error rate. In each selection step, the 
feature which can reduce β error rate the most is added into 
the current feature set. For features with the same β error 
rate, the feature resulting in the lowest α error rate is 
selected. 
 
 

 
 
Figure 6. Illustration of training results. 
 
 

The training results are illustrated by Figure 6. When a 
small percentile, e.g., pm = 0.026, is applied, a zero β error 
is  not achievable no matter how many features are used for 
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monitoring. When a medium percentile, such as pm = 0.036, 
is used, zero β errors can be achieved with relatively more 
features, and for pm = 0.036, three features are needed. 
When a large percentile, e.g., pm = 0.046 is applied, all bad 
welds can be detected with a small number of features, and 
for pm = 0.046, two features are sufficient to achieve zero β 
errors. 

Among all combinations of feature subsets and 
percentiles which can achieve zero β errors, one with lowest 
α error rate, namely, H*T/2 (Feature 7) and H1 (Feature 2) 
with percentiles 0.046 and 0.944, is selected for monitoring. 
The control limits are shown in Table 3, and the 
corresponding α error rate calculated by cross-validation is 
12.04%. 
 
 
Table 3. Summary of training results. 
 

Feature Percentiles Limits α β 

H*T/2 0.046 & 0.954 -0.0191 & 0.0215 
12.04% 0 

H1 0.046 & 0.954 -0.0390 & 0.0470 

 
 
Test Results 
 

A total number of 500 welds from plant production are 
used for monitoring performance evaluation. In the test data, 
there are 497 good welds (99.4%) and 3 bad welds (0.6%). 

A performance comparison between training and test 
data is given in Table 4. It is shown that a zero β error rate 
is achieved with an α error rate of 10.68% for test data. 
Also, the α error rate for production monitoring is 
comparable to that obtained from cross-validation, so the 
cross-validation is able to give a good estimation of α and β 
error rates. 
 
 
Table 4. Performance comparison between training and test. 
 

 α Error Rate β Error Rate 

Training 12.04% 0 

Test 10.68% 0 

 
 

Based on the results presented in this section, it can be 
concluded that our feature selection algorithm combining 
Fisher’s discriminant ratio and forward selection with k-
fold cross-validation is effective in selecting most 
appropriate features and SPC limits. 
 
CONCLUSION 
 

In this study, a new feature selection and control limit 
tuning algorithm is developed based on cross-validation for 

manufacturing processes monitoring. With this algorithm, 
the best feature subset and SPC limits can be automatically 
determined simultaneously. A real-world application to on-
line monitoring of ultrasonic metal welding demonstrates 
the effectiveness of the proposed method. 

The proposed algorithm is advantageous in the 
following several aspects. Firstly,  a new algorithm is 
developed for feature selection and SPC limits tuning based 
on α and β error rates obtained via cross-validation. 
Therefore, the selected optimal features and their 
corresponding control limits as well as the predicted 
monitoring performance are all less sensitive to the training 
dataset. Secondly, this method does not require a 
probability distribution assumption on the candidate 
features, thus it is applicable to non-normally distributed 
measurements. Finally, this algorithm can be easily 
incorporated with other control charts, such as multivariate 
Hotelling T2 control chart. 

In addition, it should be pointed out that the proposed 
algorithm may encounter the computational challenge when 
the number of candidate features or candidate percentile 
limits is too large, since the feature selection is done by 
calculating α and β error rates for every possible 
combination. Thus, a more computationally efficient search 
strategy is needed to improve the algorithm efficiency, and 
our ongoing research has been focused on this topic. 
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